Discrete Fractional Hartley and Fourier Transforms

Soo-Chang Pei, Senior Member, IEEE, Chien-Cheng Tseng, Member, IEEE, Min-Hung Yeh, Member, IEEE, and Jong-Jy Shyu, Member, IEEE

Abstract—This paper is concerned with the definitions of the discrete fractional Hartley transform (DFRHT) and the discrete fractional Fourier transform (DFRFT). First, the eigenvalues and eigenvectors of the discrete Fourier and Hartley transform matrices are investigated. Then, the results of the eigendecompositions of the transform matrices are used to define DFRHT and DFRFT. Also, an important relationship between DFRHT and DFRFT is described, and numerical examples are illustrated to demonstrate that the proposed DFRFT is a better approximation to the continuous fractional Fourier transform than the conventional defined DFRFT. Finally, a filtering technique in the fractional Fourier transform domain is applied to remove chirp interference.

Index Terms—Discrete Fourier transform, discrete fractional Fourier transform, discrete fractional Hartley transform, discrete Hartley transform.

I. INTRODUCTION

In recent years, the concept of fractional operator and measure have been investigated extensively in many engineering applications and science. Four typical examples are described as follows. The first is that the fractional derivative and integral are defined by many mathematicians and applied to solve some physical problems [1]. The second is that the fractional Fourier transform has been studied in the optical community and signal processing area [2], [3]. The third is that the fractional dimension is used to measure some real-world data such as coastline, clouds, dust in the air, and networks of neurons in the body. The fractional dimension has been applied widely to pattern recognition and classification [4]. The last is that the fractional lower order moment has been used to analyze non-Gaussian signals, which is more realistic than the Gaussian model in signal processing applications [5].

On the other hand, various unitary transforms have been widely used in image compression and adaptive filtering [6], [7]. Some typical ones are the discrete cosine transform (DCT), the discrete Hartley transform (DHT), and the discrete Fourier transform (DFT), among others. So far, the fractional version of these transforms has not been investigated yet, except for the Fourier transform. A definition of the discrete fractional Fourier transform (DFRFT) can be found in [8]. One of the natural criteria to evaluate the definition of the DFRFT is to compare the transformed results of the DFRFT with those of the continuous fractional Fourier transform (FRFT) for the same transform signal quantitatively. The more similar the transformed results, the better the fractional transform is defined.

The purpose of this paper is to define a discrete fractional Hartley transform (DFRHT) and a discrete fractional Fourier transform (DFRFT). The paper is organized as follows. In Section II, preliminaries about the fractional Fourier transform are given, including the definitions of the continuous and discrete transforms. In Section III, the eigenvalues and eigenvectors of the DHT matrix are first studied. Then, an eigendecomposition of the DHT matrix is presented. In Section IV, the DFRHT and DFRFT are defined by imposing some constraints to resolve the ambiguities existing in transform matrices. Moreover, a relationship between DFRFT and DFRHT is described, and numerical examples are presented. In the last section, a filtering technique in the fractional Fourier transform domain is applied to remove chirp interference.

II. PRELIMINARIES

In this section, the definition of the continuous fractional Fourier transform is first reviewed. Then, the eigenvalues and eigenvectors of the discrete Fourier transform matrix are briefly described. Finally, the discrete fractional Fourier transform defined by Santhanam and McClellan is stated.

A. Continuous Fractional Fourier Transform

The continuous fractional Fourier transform (FRFT) is defined as [3]

$$F^\alpha[x(t)] = \int_{-\infty}^{\infty} x(t)K_\alpha(t, \omega)dt$$ \hspace{1cm} (1)

where the transform kernel is given by

$$K_\alpha(t, \omega) = \sqrt{\frac{1-j \cos \alpha}{2\pi}} e^{j[t^2+\omega^2]/2} e^{j \omega t \cos \alpha},$$ \hspace{1cm} (2)

if α is not a multiple of π

$$\delta(t-\omega),$$ \hspace{1cm} if α is a multiple of 2π

$$\delta(t+\omega),$$ \hspace{1cm} if $\alpha + \pi$ is a multiple of 2π.

After some manipulation, it is easy to show that

$$F^{\alpha+\beta}[x(t)] = F^\beta\{F^\alpha[x(t)]\}.$$ \hspace{1cm} (3)

This implies that the angle additivity property is satisfied, i.e., application of the transform with angular parameter α followed
Fig. 1. Continuous FRFT of rectangle window function for various angles [3]: (a) $\alpha = 0.01$, (b) $\alpha = 0.05$, (c) $\alpha = 0.2$, (d) $\alpha = 0.4$, (e) $\alpha = \pi/4$, and (f) $\alpha = \pi/2$.

by an application of the transform with angular parameter β is equivalent to the application of the transform with angular parameter $\alpha + \beta$. Moreover, a complete set of eigenfunctions of the fractional Fourier transform are the Hermite Gaussian functions [2]:

$$
\Gamma^\alpha[\psi_n(x)] = e^{\alpha \beta} \psi_n(x)
$$
$$
\psi_n(x) = \frac{2^{\alpha/4}}{\sqrt{2^n n!}} H_n(\sqrt{2\pi} x) e^{-\pi x^2}
$$

where $H_n(x)$ is the nth-order Hermite polynomial. Fig. 1 shows the FRFT of the rectangular window function:

$$
x(t) = \begin{cases}
1, & \text{for } |t| \leq 2 \\
0, & \text{otherwise}
\end{cases}
$$

for various angles. The real parts of the FRFT or DFRFT in this paper are plotted by solid lines, and the imaginary parts of the FRFT or DFRFT are plotted by dashed or dotted lines.

B. Eigenvalues and Eigenvectors of DFT Matrix

Now, we review the properties of the eigenvalues and eigenvectors of the DFT matrix F whose elements are defined...
From the results in [9], [10], the properties of the eigenvalues and eigenvectors of the DFT matrix can be summarized as the following two properties.

Property 1: The eigenvalues of F are $\{1, -1, j, -j\}$ and its multiplicities are listed in the table, shown at the bottom of the page.

Proof: See [9].

Property 2: Let $\omega = 2\pi/N$, and matrix S be as shown in (7), at the bottom of the page, then it can be shown that $FS = SF$.

Proof: See [10].

Because matrix S, with distinct eigenvalues, commutes with F, the eigenvectors of S will be the desired set of eigenvectors of F. Note that S is a real and symmetric matrix, so its eigenvectors will be real and orthogonal.

C. Discrete Fractional Fourier Transform

Let the data vector be x. Santhanam and McClellan defined the discrete fractional Fourier transform as [8]

$$z_{\alpha} = F^{2\alpha/\pi} x.$$ \hfill (8)

The $(2\alpha/\pi)$th power of the DFT matrix F is found by the equation

$$F^{2\alpha/\pi} = \sum_{i=0}^{3} a_i(\alpha) F^i$$ \hfill (9)

where the coefficients $a_i(\alpha)$ are given by

$$a_0(\alpha) = \frac{1}{2} \left(1 + e^{j\alpha}\right) \cos \alpha$$
$$a_1(\alpha) = \frac{1}{2} \left(1 - j e^{j\alpha}\right) \sin \alpha$$
$$a_2(\alpha) = \frac{1}{2} \left(e^{j\alpha} - 1\right) \cos \alpha$$
$$a_3(\alpha) = \frac{1}{2} \left(-1 - j e^{j\alpha}\right) \sin \alpha.$$

Although this definition of DFRFT obeys the angle additivity property, it is not the discrete version of the continuous transform defined in (2). A numerical example is illustrated as follows. Fig. 2 shows the results of this DFRFT produced by a discrete rectangular window defined as

$$x(n) = \begin{cases} 1, & \text{for } |n| \leq 6 \\ 0, & \text{for } 7 \leq |n| \leq 36. \end{cases}$$ \hfill (10)

In this example, we choose $N = 73$. The results shown in Fig. 2 are far from the results in Fig. 1. Thus, a more suitable definition of DFRFT must be developed. This is one of the purposes of this paper.

<table>
<thead>
<tr>
<th>N</th>
<th>Mul. of 1</th>
<th>Mul. of -1</th>
<th>Mul. of $-j$</th>
<th>Mul. of j</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4m$</td>
<td>$m+1$</td>
<td>m</td>
<td>m</td>
<td>$m+1$</td>
</tr>
<tr>
<td>$4m+1$</td>
<td>$m+1$</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>$4m+2$</td>
<td>$m+1$</td>
<td>$m+1$</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>$4m+3$</td>
<td>$m+1$</td>
<td>$m+1$</td>
<td>$m+1$</td>
<td>m</td>
</tr>
</tbody>
</table>

$$S = \begin{bmatrix} 2 & 1 & 0 & \cdots & 0 & 1 \\ 1 & 2 \cos(\omega) & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 \cos(2\omega) & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \cos[(N-2)\omega] & 1 \\ 1 & 0 & 0 & \cdots & 2 \cos[(N-1)\omega] & 2 \cos[(N-1)\omega] \end{bmatrix}$$ \hfill (7)
III. EIGENVALUES AND EIGENVECTORS OF THE DHT MATRIX

In this section, an eigendecomposition of an \(N \times N \) DHT matrix \(H \) whose elements are given by

\[
H_{nk} = \frac{1}{\sqrt{N}} \left[\cos \left(\frac{2\pi kn}{N} \right) + \sin \left(\frac{2\pi kn}{N} \right) \right],
\]

will be studied. For convenience of further discussion, we define two matrices \(F_r \) and \(F_i \) as follows:

\[
F_{r_{nk}} = \frac{1}{\sqrt{N}} \cos \left(\frac{2\pi kn}{N} \right), \quad 0 \leq n, k \leq N - 1
\]

\[
F_{i_{nk}} = \frac{1}{\sqrt{N}} \sin \left(\frac{2\pi kn}{N} \right), \quad 0 \leq n, k \leq N - 1.
\]

Then, the matrix \(H \) and \(F \) can be rewritten as

\[
H = F_r + F_i \tag{12}
\]

\[
F = F_r - jF_i. \tag{13}
\]

Now, the eigenvectors of the matrix \(H \) are summarized below:

Property 3: It can be shown that \(HS = SH \). That is, the eigenvectors \(\{v_1, v_2, \ldots, v_N\} \) of \(S \) are also the eigenvectors of \(H \).

Proof: From Property 2 and (13), we have

\[
(F_r - jF_i)S = S(F_r - jF_i). \tag{14}
\]

Since \(S \) is a real matrix, we obtain

\[
F_rS = SF_r, \quad F_iS = SF_i.
\]

This equation implies that

\[
HS = (F_r + F_i)S = SH. \tag{15}
\]

The proof is completed.

From this proof, it is clear that the matrices \(F_r \) and \(F_i \) also commute with \(S \). Thus, the eigenvectors of \(S \) are also the eigenvectors of \(F_r \) and \(F_i \). After the discussion of eigenvectors of \(H \), the eigenvalues of \(H \) and their multiplicities are summarized as the following fact.

Property 4: The eigenvalues of \(H \) are \(\{1, -1\} \) and their multiplicities are listed below:

<table>
<thead>
<tr>
<th>(N)</th>
<th>Mul. of 1</th>
<th>Mul. of -1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4m</td>
<td>2m + 1</td>
<td>2m - 1</td>
</tr>
<tr>
<td>4m+1</td>
<td>2m + 1</td>
<td>2m</td>
</tr>
<tr>
<td>4m+2</td>
<td>2m + 1</td>
<td>2m + 1</td>
</tr>
<tr>
<td>4m+3</td>
<td>2m + 2</td>
<td>2m + 1</td>
</tr>
</tbody>
</table>

Proof: From Property 1 and the relations \(H = F_r + F_i \), \(F = F_r - jF_i \), this property can be proved trivially.

From this proof, we have that the eigenvectors of \(H \) with eigenvalue 1 correspond to the eigenvectors of \(F \) with eigenvalues 1 and \(-j\). Moreover, the eigenvectors of \(H \) with eigenvalue \(-1\) correspond to the eigenvectors of \(F \) with eigenvalues \(-1\) and \(j \). The byproduct of this proof is that the matrix \(F_r \) has eigenvalues \(\{1, -1, 0\} \), and their multiplicities are given as shown in (15a)

<table>
<thead>
<tr>
<th>(N)</th>
<th>Mul. of 1</th>
<th>Mul. of -1</th>
<th>Mul. of 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4m</td>
<td>m + 1</td>
<td>m</td>
<td>2m - 1</td>
</tr>
<tr>
<td>4m+1</td>
<td>m + 1</td>
<td>m</td>
<td>2m</td>
</tr>
<tr>
<td>4m+2</td>
<td>m + 1</td>
<td>m + 1</td>
<td>2m</td>
</tr>
<tr>
<td>4m+3</td>
<td>m + 1</td>
<td>m + 1</td>
<td>2m + 1</td>
</tr>
</tbody>
</table>

and that the matrix \(F_i \) has eigenvalues \(\{1, -1, 0\} \) and their multiplicities are given as shown in (15b)

<table>
<thead>
<tr>
<th>(N)</th>
<th>Mul. of 1</th>
<th>Mul. of -1</th>
<th>Mul. of 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4m</td>
<td>m</td>
<td>m - 1</td>
<td>2m + 1</td>
</tr>
<tr>
<td>4m+1</td>
<td>m</td>
<td>m</td>
<td>2m + 1</td>
</tr>
<tr>
<td>4m+2</td>
<td>m</td>
<td>m</td>
<td>2m + 2</td>
</tr>
<tr>
<td>4m+3</td>
<td>m</td>
<td>m</td>
<td>2m + 2</td>
</tr>
</tbody>
</table>

After the discussion of eigenvalues of \(H \), we investigate the eigendecomposition of the matrices \(F_r \), \(F_i \), and \(H \). Before this, we are required to show the following property.

Property 5: The following can be shown.

a) \(F_r^2 = (I + P)/2 \), \(F_i^2 = (I - P)/2 \), and \(F_rF_i = F_iF_r = 0 \). The \(I \) is an \(N \times N \) identity matrix, and \(P \) is a circular flip matrix defined by

\[
P = \begin{bmatrix} 1 & 0 \\ 0 & J \end{bmatrix}
\]

where \(J \) is an \((N - 1) \times (N - 1)\) matrix with ones on the antidiagonal.

b) If \(F_ru = \lambda u \) and \(\lambda \neq 0 \), then \(F_iu = 0 \).

c) If \(F_iu = \lambda u \) and \(\lambda \neq 0 \), then \(F_ru = 0 \).

Proof:

a) Since the inverse Fourier transform matrix is \(F_r + jF_i \), we have

\[
(F_r + jF_i)(F_r - jF_i) = I.
\]

From [9, Lemma 1] we obtain

\[
(F_r + jF_i)(F_r - jF_i) = P. \tag{18}
\]

Since \(F_r \), \(F_i \), \(I \), and \(P \) are all real matrices, the following expressions are valid by decomposing the left sides of (17) and (18) into real parts and imaginary parts:

\[
F_r^2 + F_i^2 = I
\]

\[
F_r^2 - F_i^2 = P
\]

\[
F_rF_r - F_iF_i = 0
\]

\[
F_rF_i + F_iF_r = 0.
\]

Solving these simultaneous equations, we have

\[
F_r^2 = \frac{I + P}{2}, \quad F_i^2 = \frac{I - P}{2}, \quad F_rF_i = F_iF_r = 0. \tag{19}
\]

b) Since \(F_ru = \lambda u \) (\(\lambda \neq 0 \)) and \(F_iF_r = 0 \), we have

\[
F_iu = \frac{1}{\lambda} F_rF_iu = 0.
\]

c) The proof is similar to b).
This property tells us that the matrices F_r and F_i are mutually orthogonal. Thus, the eigenvector of F_r with nonzero eigenvalue is the eigenvector of F_i with zero eigenvalue. Also, the eigenvector of F_i with nonzero eigenvalue is the eigenvector of F_r with zero eigenvalue. Based on the above facts, it is clear that the eigendecompositions of F_r, F_i, and H can be written as follows:

$$F_r = [U_1 \ U_2 \ U_3 \ U_4]
\begin{bmatrix}
I_1 & 0 & 0 & 0 \\
0 & -I_2 & 0 & 0 \\
0 & 0 & I_3 & 0 \\
0 & 0 & 0 & -I_4
\end{bmatrix}
\cdot [U_1 \ U_2 \ U_3 \ U_4]^T \quad (21)$$

$$F_i = [U_1 \ U_2 \ U_3 \ U_4]
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & I_3 & 0 \\
0 & 0 & 0 & -I_4
\end{bmatrix}
\cdot [U_1 \ U_2 \ U_3 \ U_4]^T \quad (22)$$

$$H = [U_1 \ U_2 \ U_3 \ U_4]
\begin{bmatrix}
I_1 & 0 & 0 & 0 \\
0 & -I_2 & 0 & 0 \\
0 & 0 & I_3 & 0 \\
0 & 0 & 0 & -I_4
\end{bmatrix}
\cdot [U_1 \ U_2 \ U_3 \ U_4]^T \quad (23)$$

where I_i is the identity matrix with size $N_i \times N_i$. The values of N_i are listed below.

<table>
<thead>
<tr>
<th>N</th>
<th>N_1</th>
<th>N_2</th>
<th>N_3</th>
<th>N_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4m$</td>
<td>$m + 1$</td>
<td>m</td>
<td>m</td>
<td>$m - 1$</td>
</tr>
<tr>
<td>$4m + 1$</td>
<td>$m + 1$</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>$4m + 2$</td>
<td>$m + 1$</td>
<td>$m + 1$</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>$4m + 3$</td>
<td>$m + 1$</td>
<td>$m + 1$</td>
<td>$m + 1$</td>
<td>m</td>
</tr>
</tbody>
</table>

The matrices U_i are given by the following.

1) U_1 is constructed by the eigenvectors v of matrix S which satisfy $F_r v = v$.
2) U_2 is constructed by the eigenvectors v of matrix S which satisfy $F_i v = v$.
3) U_3 is constructed by the eigenvectors v of matrix S which satisfy $F_r v = -v$.
4) U_4 is constructed by the eigenvectors v of matrix S which satisfy $F_i v = -v$.

In the next section, we will use the eigendecompositions of H and F to define discrete fractional Hartley and Fourier transforms, and use the eigendecompositions of F_r and F_i to study the relationship between DFRHT and DFRFT.

IV. Definitions of DFRHT and DFRFT

A. Discrete Fractional Hartley Transform

Let data vector be x; then its fractional Hartley transform y_{τ} is defined by

$$y_{\tau} = H^\tau x. \quad (24)$$

When the power τ is chosen as 1, the DFRHT becomes the conventional Hartley transform. When $\tau = 0$, it is clear that $y_0 = x$. Since expression $H^{\tau + p} x = H^\tau H^p x$ is valid, the angle additivity property is satisfied. Now, the problem is how to compute the matrix H^τ. The matrix H^τ can be obtained by taking the τth power of the eigenvalues of the matrix H, that is,

$$H^\tau = [U_1 \ U_2 \ U_3 \ U_4]
\begin{bmatrix}
I_1 & 0 & 0 & 0 \\
0 & (-I_2)^\tau & 0 & 0 \\
0 & 0 & I_3 & 0 \\
0 & 0 & 0 & (-I_4)^\tau
\end{bmatrix}
\cdot [U_1 \ U_2 \ U_3 \ U_4]^T. \quad (25)$$

It is clear that there are two ambiguities in this decomposition to make the computation of H^τ not unique. They are the following.

A1) Since the following two expressions are valid:

$$1^\tau = e^{-j2k\pi \tau}, \quad (-1)^\tau = e^{-j(2k+1)\pi \tau}, \quad \text{for all integer } k$$

the matrices $I_i^\tau (i = 1, 3)$ and $(-I_i)^\tau (i = 2, 4)$ are not unique. Additional constraint must be imposed such that this ambiguity can be removed.

A2) Since U_1 is constructed by the eigenvectors v of the matrix S which satisfies $F_r v = v$, any two column vectors of U_1 can be interchanged. Thus, there exist N_1! valid matrices U_1. Similarly, the matrices $U_3(i = 1, 3)$ and $U_5(i = 2, 4)$ suffer the same trouble. In order to make U_i be unique, it is necessary to propose a rule to arrange the order of the column vectors in U_i.

In the following, we will provide a simple assignment rule to remove the ambiguities A1) and A2). For removing ambiguity A1), we choose I_i^τ and $(-I_i)^\tau$ as follows:

$$I_i^\tau = \begin{bmatrix}
e^{-j0\pi \tau} & 0 & 0 & \cdots & 0 & 0 \\
0 & e^{-j2\pi \tau} & 0 & \cdots & 0 & 0 \\
0 & 0 & e^{-j4\pi \tau} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & e^{-j(2(N_i-1)\pi \tau)} & 0
\end{bmatrix}, \quad i = 1, 3$$

$$(-I_i)^\tau = \begin{bmatrix}
e^{-j\pi \tau} & 0 & 0 & \cdots & 0 & 0 \\
0 & e^{-j3\pi \tau} & 0 & \cdots & 0 & 0 \\
0 & 0 & e^{-j5\pi \tau} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & e^{-j(2(N_i-1)\pi \tau)} & 0
\end{bmatrix}, \quad i = 2, 4. \quad (26)$$

Moreover, we remove ambiguity A2) by arranging the column vectors of the matrix U_i in terms of the following description. Let u_{im} and u_{in} be two column vectors of the matrix U_i, then there exist λ_m and λ_n such that

$$S u_{im} = \lambda_m u_{im}, \quad S u_{in} = \lambda_n u_{in}.$$

The constraint imposed on the column vectors u_{im} and u_{in} is that

$$\lambda_m > \lambda_n, \quad \text{if } m < n. \quad (28)$$
Because the eigenvalues of S are distinct, the matrix U_i can be uniquely specified by the above constraint.

Although the rule to remove ambiguities A1) and A2) has many choices, the proposed rule is very simple. In the sequel, we will use numerical examples to describe the advantage of this choice. Finally, we summarize the computation procedure of fractional Hartley transform as follows.

Procedure 1: Given data vector x, matrix S, and power τ, use the following steps to compute y_{τ}:

1) Compute the eigenvalues and eigenvectors of matrix S.
2) Use (28) to construct the matrices U_i ($i = 1, \cdots, 4$).
3) Use (26), (27) to compute I_i ($i = 1, 3$) and $(-I_i)^{\tau}$ ($i = 2, 4$).
4) Use (25) to calculate matrix H^τ.
5) Use (24) to compute $y_{\tau} = H^\tau x$.

When data vector x is real, its fractional Hartley transform y_{τ} is complex, except when τ is an integer. Moreover, it is easy to show that

$$H^{2m} x = x$$
$$H^{2m+1} x = H x.$$

This expression is intuitively valid because the eigenvalues of the matrix H are 1 or -1.

B. Discrete Fractional Fourier Transform

Let data vector be x; then its fractional Fourier transform is defined by

$$z_{\tau} = F^{\tau} x.$$ (29)

Compare (29) with (9); we obtain $\tau = 2\nu/\pi$. Instead of using (9) to compute the matrix F^{τ}, we develop a new procedure to calculate it. Since

\[F^\tau = [F_{\nu} + (-j) F_i]^\tau \]

substitute (21), (22) into (30); we obtain

\[F^\tau = \begin{bmatrix} U_1 & U_2 & U_3 & U_4 \end{bmatrix} \begin{bmatrix} (I_1)^\tau & 0 & 0 & 0 \\ 0 & (I_2)^\tau & 0 & 0 \\ 0 & 0 & (I_3)^\tau & 0 \\ 0 & 0 & 0 & (I_4)^\tau \end{bmatrix} \begin{bmatrix} U_1 & U_2 & U_3 & U_4 \end{bmatrix}^\dagger \]

\[= \begin{bmatrix} U_1 & U_2 & U_3 & U_4 \end{bmatrix} \begin{bmatrix} (I_1)^\tau & 0 & 0 & 0 \\ 0 & (I_2)^\tau & 0 & 0 \\ 0 & 0 & (I_3)^\tau & 0 \\ 0 & 0 & 0 & (I_4)^\tau \end{bmatrix} \begin{bmatrix} U_1 & U_2 & U_3 & U_4 \end{bmatrix}^\dagger. \] (31)

It is clear that there are three ambiguities in this expression. The ambiguities of matrices I_j, $(-I_j)^{\tau}$, and U_i are all the same as those in the DFRHT case. Thus, these ambiguities can be removed by using the same constraints. Since the following expression is valid:

$$(-j)^{\tau} = e^{-j(2\nu+1)/2\pi}, \quad \text{for all integer } k$$ (32)

the value of $(-j)^{\tau}$ is not unique. We choose the value

$$(-j)^{\tau} = e^{-j(\pi/2)\tau}.$$ (33)

After these choices, we have the following facts.

Property 6: The following can be shown.

a) When $N = 4m + 1$ or $N = 4m + 3$, the eigenvalues of F^τ are given by $e^{-j\pi m/2}$, $0 \leq n \leq N - 1$. (34)

b) When $N = 4m$ or $N = 4m + 2$, the eigenvalues of F^τ are given by $e^{-j\pi (n/2)}$ and $0 \leq n \leq N - 2$. (35)

Proof: Substitute (26), (27), and (33) into (31); the fact can be proven easily.

From Property 6 and (4), it is clear that the eigenvalues of the proposed DFRFT matrix F^τ are consistent with those of the continuous fractional Fourier transform defined in (2) when we choose $\tau = 2\nu/\pi$. However, the eigenvalues of the DFRFT matrix $F^{2\nu/\pi}$ defined in (9) do not have this consistent property. Thus, the transformed results of our DFRFT are more similar to those of the continuous FRFT than the results of the DFRFT defined in (9) for the same data vector x. In the sequel, two numerical examples and an analytical method are used to illustrate this fact. Finally, we summarize the computation procedure of the fractional Fourier transform as follows.

Procedure 2: Given data vector x, matrix S, and power τ, use the following steps to compute z_{τ}:

1) compute the eigenvalues and eigenvectors of matrix S;
2) use (28) to construct the matrices U_i ($i = 1, \cdots, 4$);
3) use (26), (27) to compute I_i ($i = 1, 3$) and $(-I_i)^{\tau}$ ($i = 2, 4$);
4) use (33) to calculate $(-j)^{\tau}$;
5) use (31) to calculate matrix F^τ;
6) use (29) to compute $z_{\tau} = F^\tau x$.

When data vector x is real, its fractional Fourier transform z_{τ} is complex, except that τ is an integer.

C. Relationship Between DFRHT and DFRFT

In the following, the relationship between the DFRHT and DFRFT will be investigated. Before this, it is useful to review the relationship between the DFT and DHT. The main result is summarized as follows.

Property 7: Let the DHT and DFT of x be denoted by $x_F = Fx$, $x_H = Hx$. (36)

Then it can be shown that

$$\text{Real}(x_F) = \left(\frac{1+p}{2} \right) x_H$$
$$\text{Imag}(x_F) = -\left(\frac{1-p}{2} \right) x_H.$$
where \(\text{Real}(\cdot) \) and \(\text{Imag}(\cdot) \) denote the real part and imaginary parts of the vector.

Proof: See [11].

Property 7 tells us that the even part of DHT is the real part of DFT, and the odd part of DHT corresponds to the imaginary part of the DFT. Thus, the DFT can be computed from the results of DHT by using Property 7. Now, we will address how to calculate DFRFT when DFRHT has been computed. The following property will help us solve this problem.

Property 8: Let DFRHT \(y_r = H^* x \), and define its even part and odd parts as

\[
y_r^e = \frac{I + P}{2} y_r, \quad y_r^o = \frac{I - P}{2} y_r.
\]

Then it can be shown that

\[
y_r^e = F_r^o x, \quad y_r^o = F_r^e x.
\]

Proof: From Property 5, we have

\[
y_r^e = \frac{I + P}{2} y_r = F_r^o H^* x.
\]

Moreover, from (21), (22), and (25), we get

\[
H^* = F_r^o + F_r^e.
\]

Substituting (38) into (37) we obtain

\[
y_r^e = F_r^o x + F_r^o F_r^e x.
\]

Using the eigendecompositions of \(F_r \) and \(F_r^e \) described in (21), (22), it can be shown that

\[
F_r^{2 \tau} = F_r^e, \quad F_r^{2 \tau} F_r^e = 0.
\]

Thus, we obtain

\[
y_r^e = F_r^e x.
\]

The proof is completed. As for the proof of \(y_r^o = F_r^e x \), it can be shown similarly.

This property tells that the even part of DFRHT is equal to \(F_r^o x \), and the odd part of DFRHT is equal to \(F_r^e x \). From (31), (33), it is easy to show that

\[
F_r^o = F_r^e + e^{-j(\pi/2)\tau} F_r^e.
\]

Multiply both sides by data vector \(x \), we obtain

\[
z_r = y_r^e + e^{-j(\pi/2)\tau} y_r^o = \frac{I + P}{2} y_r + e^{-j(\pi/2)\tau} \frac{I - P}{2} y_r.
\]

This expression is the relationship between DFRHT and DFRFT. It can be used to compute DFRFT from the results of DFRHT easily. When \(\tau = 1 \), (41) reduces to the conventional relationship between DFT and DHT described in Property 7. Thus, one particular feature of our definitions of DFRHT and DFRFT is that the relation in Property 7 is still preserved. Moreover, if the real part and imaginary part of the DFRHT \(y_r \) are both even symmetric, then it can be shown that

\[
\frac{I + P}{2} y_r = y_r, \quad \frac{I - P}{2} y_r = 0.
\]

This means that \(z_r = y_r \), i.e., DFRFT is equal to DFRHT.

D. Numerical Examples

Example 1. Rectangular Window Function: In this example, we deal with the transformation of the rectangular window defined in (10). By using the definitions of DFRHT and DFRFT developed in this section, the transform results are shown in Fig. 3 for various angular parameters \(\tau = 2\alpha/\pi \). Compared to the results in Fig. 3(a) with Fig. 1, we observe that the transform results in Fig. 3(a) are more similar to those in Fig. 1 than those in Fig. 2. Thus, our definition of DFRFT is a better approximation of the continuous fractional Fourier transform than the DFRFT defined in [8]. However, only 73 samples are used in this experiment; the curves in Fig. 3(a) are much smoother than those in Fig. 1. Finally, it is worth mentioning that the results in Fig. 3(a) are also obtained from the results in Fig. 3(b) by using (41), which is the relationship between the DFRHT and DFRFT. In fact, the DFRFT is equal to the DFRHT in this example because DFRHT \(y_r \) is even symmetric for all \(\tau \). This is owing to the fact that the rectangle function is even symmetric.

Example 2. Two-Impulse Function: In this example, we further consider the fractional transform of the following continuous signal:

\[
x(t) = 3\delta(t - d) + \delta(t + d)
\]

where \(\delta(t) \) is the impulse function. Using the results in [3], the continuous FRFT of this special signal has the closed formula given by

\[
F^\alpha[x(t)] = \sqrt{\frac{1 - j \cot(\alpha)}{2\pi}} e^{j(d^2 + \alpha^2) / 2\cot(\alpha)} \cdot [3\cos(k_0 \cos(\alpha) + e^{j\omega_0 \cos(\alpha)}].
\]

Fig. 4(a) shows the continuous FRFT of the signal \(x(t) \) for various angle \(\alpha \) and \(d = 0.4 \). For comparison, we examine the DFRFT of the digital signal

\[
x(n) = 3\delta(n - 1) + \delta(n + 1)
\]

\[
= \begin{cases}
3, & n = 1 \\
1, & n = -1 \\
0, & |n| \leq 20
\end{cases}
\]

where \(\delta(n) \) is the unit sample function and the length of \(x(n) \) is 41. Fig. 4(b) and (c) shows the transform results of the proposed DFRFT and DFRHT. It is clear that the results of our DFRFT are very similar to those of the continuous FRFT shown in Fig. 4(a). Moreover, the results of DFRHT are not the same as those of DFRFT because the signal \(x(n) \) is not even symmetric. Finally, it is worth mentioning that the results in Fig. 4(b) also can be obtained from the results in Fig. 4(c) by using (41), which is the relationship between the DFRHT and DFRFT.

E. Discussion

In the following, an analytical approach is used to show that our DFRFT is a better discrete version of the continuous FRFT than the conventional DFRFT defined in [8]. First, we show that the eigenvector of the matrix \(S \) defined in (7) is a discrete counterpart of the Hermite function which is
an eigenfunction of fractional Fourier transform. Let vector \(\mathbf{v}_i = [v_{i0}, v_{i1}, \ldots, v_{i(N-1)}]^T \) be an eigenvector of matrix \(S \) with eigenvalue \(\gamma_i \); then it will satisfy the following difference equation [10]:

\[
\delta^2 v_{ik} + \left[2 \cos \left(k \frac{2\pi}{N} \right) - (\gamma_i - 2) \right] v_{ik} = 0 \quad (45)
\]

where \(\delta^2 v_{ik} = v_{i(k+1)} - 2v_{ik} + v_{i(k-1)} \) is the central second difference operator. Because (45) can be treated as a discrete version of the second-order differential equation

\[
\frac{d^2 v(t)}{dt^2} + [2 \cos(2\pi t) - (\gamma - 2)]v(t) = 0 \quad (46)
\]

whose periodic solutions are the Mathieu functions [10], the eigenvectors of \(S \) may be thought of as discrete Mathieu functions. Since the Mathieu functions can converge to the Hermite functions [17], the eigenvectors of matrix \(S \) also can be treated as the discrete Hermite functions. Thus, the eigenvectors of our fractional Fourier transform matrix \(F^\tau \) are approximate discrete Hermite functions which are the eigenfunctions of the continuous FRFT because matrices \(S \) and \(F^\tau \) have the same eigenvectors. This fact tells us that the eigenfunctions of our DFRFT and continuous FRFT are consistent. Moreover, Property 6 states that the eigenvalues of the proposed DFRFT matrix \(F^\tau \) are consistent with those of the continuous FRFT. Due to these two agreements, the transform results of our DFRFT are similar to those of the continuous FRFT. As for the definition in [8], their eigenvectors and eigenvalues of the transform matrix are not consistent with continuous ones, so its transform results are not similar to the continuous ones.

V. CHIRP FILTERING IN THE DFRFT DOMAIN

The fractional Fourier transform (FRFT) has been successfully used in many applications such as signal detection, pattern recognition, time-variant filtering, multiplexing, data compression, and the study of time–frequency distributions [12]–[16]. In this section, we concentrate on the applications of the chirp interference removal. The details of the continuous chirp case have been investigated in [16]. Here, we only extend the technique developed in [16] to the discrete chirp case. Since the FRFT of the chirp signal is the line delta function in the appropriate fractional Fourier domain, we can remove this impulse of the chirp component in the FRFT domain by multiplying a narrow bandstop mask. The narrower the bandstop mask is, the less distortion the nonchirp part has.

Given the angular parameter \(\tau \) and the signal \(x(n) \) composed of a desired signal and a chirp interference, the procedure of filtering out this chirp component in DFRFT domain is summarized as follows.

- **Step 1)** Compute the DFRFT \(x_1(n) \) of the signal \(x(n) \) with angular parameter \(\tau \).

- **Step 2)** Multiply the transform result \(x_1(n) \) by the bandstop mask \(m(n) \). The masking result is denoted by \(x_2(n) = x_1(n)m(n) \).
Fig. 4. (a) Continuous FRFT of two impulse function for various angles: (top left) $\alpha = 0.25^{\circ}\pi$, (top right) $\alpha = 0.3^{\circ}\pi$, (middle left) $\alpha = 0.35^{\circ}\pi$, (middle right) $\alpha = 0.4^{\circ}\pi$, (bottom left) $\alpha = 0.45^{\circ}\pi$, and (bottom right) $\alpha = 0.5^{\circ}\pi$. (b) DFRFT of two impulse function for various angles: (top left) $\alpha = 0.25^{\circ}\pi$, (top right) $\alpha = 0.3^{\circ}\pi$, (middle left) $\alpha = 0.35^{\circ}\pi$, (middle right) $\alpha = 0.4^{\circ}\pi$, (bottom left) $\alpha = 0.45^{\circ}\pi$, and (bottom right) $\alpha = 0.5^{\circ}\pi$. (c) DFRHT of two impulse function for various angles: (top left) $\alpha = 0.25^{\circ}\pi$, (top right) $\alpha = 0.3^{\circ}\pi$, (middle left) $\alpha = 0.35^{\circ}\pi$, (middle right) $\alpha = 0.4^{\circ}\pi$, (bottom left) $\alpha = 0.45^{\circ}\pi$, and (bottom right) $\alpha = 0.5^{\circ}\pi$.
eliminated by the proposed removal method. The Gaussian signal-to-chirp-noise ratio is improved from -3.8 to 6.3 dB.

VI. CONCLUSIONS

In this paper, the definitions of the discrete fractional Hartley transform (DFRHT) and the discrete fractional Fourier transform (DFRFT) have been presented. First, the eigenvalues and eigenvectors of the discrete Fourier and Hartley transform matrices are investigated. Then, the results of the eigendecompositions of the transform matrices are used to define the DFRHT and DFRFT. Also, an important relationship between DFRHT and DFRFT is described, and numerical examples are illustrated to demonstrate that the proposed DFRFT is a better approximation to the continuous fractional Fourier transform than the conventional defined DFRFT. Finally, a filtering technique in the fractional Fourier transform domain is applied to eliminate the chirp interference. However, only fractional Hartley and Fourier transforms are defined. Thus, it is interesting to develop other types of fractional transforms such as the Hardmard transform and DCT. This topic will be investigated in the future.

REFERENCES

Soo-Chang Pei (S’71–M’86–SM’89) was born in Soo-Auo, Taiwan, R.O.C., in 1949. He received the B.S.E.E. degree from National Taiwan University in 1970 and the M.S.E.E. and Ph.D. degrees from the University of California, Santa Barbara, in 1972 and 1975, respectively.

He was an Engineering Officer in the Chinese Navy Shipyard from 1970 to 1971. From 1971 to 1975, he was a Research Assistant at the University of California, Santa Barbara. He was a Professor and Chairman in the E.E. Department of Tatung Institute of Technology from 1981 to 1983. Presently, he is the Professor and Chairman of the E.E. Department at National Taiwan University. His research interests include digital signal processing, image processing, optical information processing, and laser holography.

Dr. Pei is a member of Eta Kappa Nu and the Optical Society of America.

Chien-Cheng Tseng (S’90–M’95) was born in Taipei, Taiwan, R.O.C., on August 25, 1965. He received the B.S. degree, with honors, from Tatung Institute of Technology, Taipei, Taiwan, in 1988, and the M.S. and Ph.D. degrees from the National Taiwan University, Taipei, Taiwan, in 1990 and 1995, respectively, all in electrical engineering.

From 1995 to 1997, he was an Associate Research Engineer at Telecommunication Laboratories, Chungwa Telecom Company, Ltd. at Taoyuan, Taiwan. He is currently an Assistant Professor of the Department of Electronics Engineering at Hwa Hsia College of Technology and Commerce. His research interests include digital signal processing, pattern recognition, and electronic commerce.

Min-Hung Yeh (S’92–M’96) was born in Taipei, Taiwan, 1964. He received the B.S. degree in computer engineering from National Chiao-Tung University, Hsinchu, Taiwan, in 1987, M.S. degree in computer science and information engineering in 1992, and the Ph.D. degree in electrical engineering in 1997, both from National Taiwan University, Taipei, Taiwan.

He is currently an Assistant Professor in the Department of Computer Information Science at Tamsui Oxford University College, Tamsui, Taipei, Taiwan. His main research interests are in fractional Fourier transform, time-frequency analysis, and wavelets.

Jong-Jy Shyu (S’88–M’92) received the B.S. degree from the Tatung Institute of Technology, Taipei, Taiwan, in 1983 and the M.S. and Ph.D. degrees from the National Taiwan University, Taipei, in 1988 and 1992, respectively, all in electrical engineering.

In 1992, he joined the faculty of the Department of Computer Science and Engineering, Tatung Institute of Technology, Taipei, and became a Professor in 1996. In August 1997, he joined the National Kaohsiung University of Science and Technology, where he is currently a Professor with the Department of Computer and Communication Engineering. His research interests include digital signal processing, video processing, and communication systems.