Soil moisture based real-time irrigation

International Mini-Workshop on DDDAS (Dynamic Data Driven Application Systems)
Providing Water

• Canal modeling
• Necessary sensing
• Gate operating

• Central-Pivot modeling
• Sprinkler modeling
• Optimal central-pivot operating

Demanding Water

• Crop modeling
• Soil modeling
• Water demand

• Soil moisture sensing
Project Overview

- Canal Operating
- Field Modeling
- Field Operating
- Field Sensing
Water Rights → Water Demand

Weather

Canal Operating

Field Modeling

Available Water

Water need

Water provided

Sensor Trajectory

Calibration

Field Operating

Field Sensing
Field modeling

- Problem definition: What are the sources of water loss and what are the dynamics of these losses? How can we predict the evolution of the moisture?

[Diagram showing infiltration, evapotranspiration, crop growth]
Water balance model

- Rain
- Transpiration
- Evapo-transpiration
- Evaporation
- Irrigation
- Runoff
- Root Zone
- Water Storage
- Drainage
- Below Root Zone
Water balance equations

\[S_{t+1} = S_t + (R_n + I_e) - D - ET \]

\(S_t \) = soil water storage at time \(t \) (day, h, mn)
\(R_n \) = Net rain (Initial rain - Interception - Runoff)
\(I_e \) = Irrigation
\(D \) = Water losses below the root zone
\(ET \) = evaporation and transpiration
Water infiltration equations

- Diffusion process with coupled flow:

\[
\begin{aligned}
\frac{\partial v}{\partial t} &= -\gamma \frac{\partial v}{\partial z} \\
\frac{\partial c}{\partial t} &= \frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right) + \frac{\partial}{\partial y} \left(D \frac{\partial c}{\partial y} \right) + D \frac{\partial^2 c}{\partial z^2} - \frac{\partial (vc)}{\partial z}
\end{aligned}
\]

- With:
 \(c(x,y,z,t) \) is the soil moisture
 \(v(x,y,z,t) \) is the velocity of soil moisture
 \(D(x,y) \) is the diffusion rate
Surface dynamics

• Due to the permeability of the soil, maybe water stays on the ground:

\[q(x, y, t) = \int_0^t (F(x, y, u) + R(u) - EV(u) - v_{\text{max}}) \, du \]

\[\begin{cases}
 v_{\text{max}} & \text{if } q(x, y, t) > 0 \\
 F(x, y, t) + R(t) - EV(t) & \text{otherwise}
\end{cases} \]

• The soil moisture is carried by water

\[c(x, y, 0, t) = k_v v(x, y, 0, t) \]
Evapotranspiration models

- The Priestley-Taylor ET model
- The McNaughton-Black ET model
- The Penman ET model
- The Penman-Monteith ET model
- The Shuttleworth-Wallace ET model
- Etc…
Evapotranspiration models comparison

Comparison of the increasing complexity of the models in terms of number of parameters required

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>PT</th>
<th>MB</th>
<th>Penman</th>
<th>PM</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of change of vapor pressure with temperature</td>
<td>Δ</td>
<td>kPa K⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total available energy</td>
<td>A</td>
<td>W m⁻²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychrometric constant</td>
<td>γ</td>
<td>kPa K⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air temperature</td>
<td>T_a</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific heat at constant pressure</td>
<td>c_p</td>
<td>J kg⁻¹ K⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air density</td>
<td>ρ</td>
<td>kg m⁻³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor pressure deficit</td>
<td>D</td>
<td>kPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk stomatal resistance of the canopy</td>
<td>r_cs</td>
<td>s m⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind speed</td>
<td>u</td>
<td>m s⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerodynamic resistance above the canopy</td>
<td>r_aa</td>
<td>s m⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk boundary layer resistance of the vegetation</td>
<td>r_va</td>
<td>s m⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerodynamic resistance for substrate and canopy</td>
<td>r_sa</td>
<td>s m⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface resistance of the substrate</td>
<td>r_ss</td>
<td>s m⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available soil energy</td>
<td>A_s</td>
<td>W m⁻²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PT, Priestley—Taylor; MB, McNaughton—Black; PM, Penman—Monteith; SW, Shuttleworth—Wallace.

- Trade-off between accuracy and available information
Real-time model

• For every depth, we can create a map of the soil moisture
Model recalibration

Model

UAV picture

08/12/2006

Christophe TRICAUD - CSOIS - USU
Field Operating

• Problem definition: Given how the water is spatially needed on the field, how do I operate the center-pivot and the sprinklers?
Center pivot model

• If all sprinklers can be actuated independently:
 \[\text{Irrigation}(x,y,t) = f(\omega, r, q_1, q_2, \ldots, q_n) \]

• If all sprinklers have the same outflow:
 \[\text{Irrigation}(x,y,t) = f(\omega, q, r) \]

• Effect of wind
Control System Design

• Specification
 – Ensure soil moisture level within the root zone
 – Minimize water use
 – Minimize water loss

• Requirements
 – Optimal control
 – Robust control
Control Scheme

- Measured soil moisture
- Estimated soil moisture
- Water

Central pivot

Field

Model

Model Inverse

Outflow setpoint per sprinkler
Research directions

• Optimal sensing for parameter estimation of distributed parameters system
 – Optimal UAV trajectory (2d sensing)
 – Combination of UAV and soil moisture probes

• Optimal control of central pivot
 – Model inverse to get sprinkler setpoint
 – Importance of hardware specification
Example: Dr. Moore & Dr. Chen Iterative learning control approach

Iterative Learning Control Approach to a Diffusion Control Problem in an Irrigation Application

Kevin L. Moore† Senior Member, IEEE (Presenter)
YangQuan Chen‡, Senior Member, IEEE

†G.A. Dobelman Distinguished Professor of Engineering
Colorado School of Mines
1610 Illinois Street, Golden, CO 80401
moorek@mines.edu

‡Center for Self-Organizing and Intelligent Systems (CSOIS)
Sept. of Electrical and Computer Engineering
4160 Old Main Hill, Utah State University, Logan, UT 84322-4160, USA
yqchen@ece.usu.edu

2006 IEEE International Conference on Mechatronics and Automation
Luoyang, China
25-28 June 2006
Questions?
References

- Edward Martin, Agricultural and Biosystems Engineering Department, University of Arizona, *class material*
- *Evapotranspiration & Soil Water Storage*, Ali Fares, PhD; Watershed Hydrology, NREM 691; UHM-CTAHR-NREM
- Kevin L. Moore and YangQuan Chen. “*Iterative Learning Control Approach to a Diffusion Control Problem in an Irrigation Application*”, IEEE ICMA06, June 25-28, 2006, Luoyang, China,
- Joshua B. Fisher, Terry A. DeBiase, Ye Qi1, Ming Xu, Allen H. Goldstein, *Evapotranspiration models compared on a Sierra Nevada forest ecosystem*