Cooperative Control and Consensus Building for Autonomous Vehicle Swarms

Wei Ren

Assistant Professor
Center for Self-Organizing and Intelligent Systems (CSOIS)
Dept. of Electrical & Computer Engineering
Utah State University
http://www.engineering.usu.edu/ece/faculty/wren/
Vehicle Systems

- unmanned ground vehicle (UGV)
- unmanned underwater vehicle (UUV)
- unmanned air vehicle (UAV)
- vehicles in outer space & other worlds

In this talk, robot == vehicle == system
Cooperative / Coordinated Control

• Motivation:
 While single vehicles performing solo missions can yield some benefits, greater benefits will come from the cooperation of teams of vehicles.

• Common Theme:
 coordinate the movement of multiple vehicles in a certain way to accomplish an objective.

 e.g. many small, inexpensive vehicles acting together can achieve more than one monolithic vehicle.
 • e.g., networked computers
 • Shifts cost and complexity from hardware platform to software and algorithms.

• Multi-vehicle Applications:
 Autonomous household appliances, enhanced surveillance systems, hazardous material handling systems, active reconfigurable sensing systems, space-based interferometry, future autonomous combat systems, etc.
Cooperative Control Applications

• **Formation Control**
 Mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, spacecraft, Automated highways

• **Non-formation Control**
 Task Assignment, cooperative transport, cooperative role assignment, air traffic control, cooperative timing
 • Cooperative search, reconnaissance, surveillance (military, homeland security, border patrol, etc.)
 • Cooperative monitoring of forest fires, oil spills, wildlife, etc.
 • Rural search and rescue.
Typical Approaches to Formation Control

- Leader-following
- Behavioral
- Virtual Leader / Virtual Structure
Leader-follower Approach

• Basic Idea:
 Motion prescribed by the leader: the rest simply follow.

• Advantages:
 Simple to understand and implement; mathematically analyzable.

• Disadvantage:
 Leader does not know about followers: no formation feedback; the followers are unaware of the goal; leader is a single point of failure.
Behavioral Approach

- Basic Idea: Several competing behaviors.

- Advantages: Decentralized; Robust: Every vehicle knows about its goal; local information exchange.

- Disadvantage: Precision is compromised; difficult to analyze mathematically.
Formation Control
Virtual Leader / Virtual Structure Approach

- Basic Idea:
 Desired formation treated as rigid body; Vehicles track assigned locations on structure.

- Advantages:
 High precision; mathematically analyzable; Simple to implement.

- Disadvantage:
 Centralized; Acting as a virtual structure limits some potential applications.
Cooperative Control: Inherent Challenges

- Complexity:
 - Systems of systems.
- Communication:
 - Limited bandwidth and connectivity.
 - What? When? To whom?
- Arbitration:
 - Team vs. Individual goals.
- Computational resources:
 - Will always be limited
Consensus Seeking in Multi-vehicle Systems

Meet for lunch problem
- Agree to meet for lunch but forget to decide on a time
- Each person may only get hold of some people
- Some people’s opinion may be valued more than others
- What algorithm to use to reach consensus on a time
- Convergence speed

Consensus seeking facilitates
- Distributed decision making
- Multi-robot coordination using local interactions
- Multiple UAV cooperative timing mission
- Formation keeping mission
Consensus Algorithms

• Basic Idea
 Each vehicle updates its information state based on the information states of its local (possibly time-varying) neighbors in such a way that the final information state of each vehicle converges to a common value.

• Extensions
 Relative state deviations, incorporation of other group behaviors

• Feature
 Only local neighbor-to-neighbor information exchange required

Vicsek’s Model

http://www.red3d.com/cwr/boids/
Rendezvous

Vehicle dynamics: $\ddot{r}_i = u_i$.

Control Law: $u_i = -\alpha \dot{r}_i - \sum_{j \in N_i} k_{ij}(r_i - r_j) + \gamma (\dot{r}_i - \dot{r}_j)$.
Decentralized Cooperative Timing Example

- Consensus strategy similar to Kalman filter
- Initially, each UAV determines its own ETA
- Team ETA is updated using discrete-time consensus strategy
- Every two seconds, each UAV communicates its ETA to another UAV (randomly chosen)
- Wind prevents UAVs from achieving timing exactly
Experimental Results

Experiment was performed on a mobile actuator and sensor network platform at Utah State University.

Team:
Graduate Students: Haiyang Chao, Bill Bourgeois, and Nathan Sorensen
Faculty: YangQuan Chen and Wei Ren
Experimental Results

Experiment was performed on a mobile actuator and sensor network platform at Utah State University.

Rendezvous

Team:
Graduate Students: Haiyang Chao, Bill Bourgeois, and Nathan Sorensen
Faculty: YangQuan Chen and Wei Ren
Formation Control

Consensus reached on deviation vectors

Consensus reached on a possibly time-varying formation center
Experimental Results

Experiment was performed on a mobile actuator and sensor network platform at Utah State University.

Formation Stabilization

Team:
Graduate Students: Haiyang Chao, Bill Bourgeois, and Nathan Sorensen
Faculty: YangQuan Chen and Wei Ren
AmigoBot Platform
Formation Control Strategy

<table>
<thead>
<tr>
<th>Communication Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{i}^{vc})</td>
</tr>
<tr>
<td>({j \in N(t) \mid x_{j}^{vc} })</td>
</tr>
<tr>
<td>Consensus-based Formation</td>
</tr>
<tr>
<td>State Estimator (\text{#i})</td>
</tr>
<tr>
<td>Group Leader</td>
</tr>
<tr>
<td>Follower</td>
</tr>
<tr>
<td>Consensus-based Formation</td>
</tr>
<tr>
<td>Control Module (\text{#i})</td>
</tr>
<tr>
<td>({j \in J(t) \mid y_{j} - y_{j}^d })</td>
</tr>
<tr>
<td>(r_{i})</td>
</tr>
<tr>
<td>(u_{j})</td>
</tr>
<tr>
<td>Vehicle (\text{#i})</td>
</tr>
<tr>
<td>(r_{i} - r_{i}^d)</td>
</tr>
</tbody>
</table>
AmigoBot Formation Control Experiment
Synchronized Spacecraft Rotations

Spacecraft attitude dynamics:

\[\dot{q}_i = -\frac{1}{2} \omega_i \times \dot{q}_i + \frac{1}{2} \dot{q}_i \omega_i, \quad \ddot{q}_i = -\frac{1}{2} \omega_i \cdot \dot{q}_i \]

\[J_i \dot{\omega}_i = -\omega_i \times (J_i \omega_i) + \tau_i. \]

Control torque:

\[\tau_i = -k_G q^d_i \dot{q}_i - d_G \omega_i - \sum_{j \in N_i} [a_{ij} \dot{q}_j q_i + b_{ij} (\omega_i - \omega_j)], \]

where \(k_G, d_G, a_{ij}, \) and \(b_{ij} \) are positive scalars, and \(q^d_i \) denotes the desired attitude for each spacecraft.
Synchronized Spacecraft Rotations

Distributed attitude alignment among six spacecraft. The above figure shows the quaternion attitudes of spacecraft \#1, \#3, and \#5, where \(q^d = [0, 0, 0, 1]^T \) and \(q_i^{(j)} \) denotes the \(j^{th} \) component of quaternion \(q_i \).
Thank you!

Questions?