\[\Delta_{\text{SNR}} = 6.01 \text{dB}, \quad \Delta_{\text{SNR}} = 20 \text{dB}, \quad \Delta_{\text{SNR}} = 7.72 \text{dB} \] and
\[4(d) \quad \Delta_{\text{SNR}} = 30 \text{dB}, \quad \Delta_{\text{SNR}} = 10.14 \text{dB}. \] In all cases the restored images are very satisfactory, based on the improvement in SNR and visual inspection. We finally compare the values of \(\alpha \) obtained by the proposed approach at convergence (denoted by \(\alpha_{\text{SNR}} = (\epsilon^2 / |C_{\text{org}}|^2 + \delta \)), where \(x^* \) is the restored image at convergence) with the values obtained by the cross-validation method (\(\alpha_{\text{CV}} \)) and from the minimization of \(\| \tilde{f}(\alpha) - x_{\text{org}} \|^2 \), denoted by \(\alpha_{\text{org}} \). We further compare these values of \(\alpha_{\text{SNR}} = \frac{\epsilon^2}{|C_{\text{org}}|^2} \) and \(\alpha_{\text{ITR},0} = \frac{\epsilon^2}{|C_{\text{ITR}}|^2} \), that is the value of \(\alpha \) obtained by using the restored image obtained by iteration (6) but setting \(\delta = 0 \). All these values are shown in Table II for three different SNR's. From this table it is clear that \(\alpha_{\text{ITR}} = \alpha_{\text{ITR},0} > \alpha_{\text{SNR}} \geq \alpha_{\text{CV}} > \alpha_{\text{ITR}} \). This implies that the restored images obtained with the use of these values of the regularization parameter will be increasingly smoother as \(\alpha \) increases from \(\alpha_{\text{ITR}} \) to \(\alpha_{\text{ITR}} \). We also observe that \(\alpha_{\text{ITR},0} = \alpha_{\text{ITR}} \), making the restored image obtained with the use of \(\alpha_{\text{ITR},0} \) optimal in the sense that \(\| \tilde{f} - x_{\text{org}} \|^2 \) is minimized. At the same time, as discussed in [6] and the references therein, the restored image with the use of \(\alpha_{\text{ITR}} \) is oversmooth, making the image obtained with the use of \(\alpha_{\text{ITR}} \) subjectively more preferable.

V. Conclusion

In this correspondence we have proposed a regularized iterative image restoration algorithm according to which a restored image and an estimate of the regularization parameter are provided simultaneously at each iteration step. Sufficient conditions for the convergence of the algorithm have been derived. The algorithm assumes the same amount of prior knowledge as the CLS algorithm, namely, knowledge of the value of the variance of the noise, but requires considerably fewer computations. Linear constraints can also be incorporated into the iteration. When nonlinear constraints are used the linearization step in the analysis of the algorithm can not be applied, although the algorithm has been shown to converge experimentally. Although the analysis is carried out for the case that \(D \) and \(C \) represent spatially invariant filters and the autocorrelation matrix of the image is block circulant, iteration (6) can be run for the more general case when \(D \) and \(C \) represent spatially varying filters and the image is nonstationary. The convergence analysis holds true in the general case as well, although it becomes more computationally expensive to verify the sufficient conditions for convergence at each iteration step. In other words, no explicit bounds for \(\beta \) and \(\delta \) can be reached in this case.

Acknowledgment

The authors wish to thank Prof. A. Bayliss of Northwestern University for his constructive suggestions during the course of this work.

On the Design of FIR Digital Differentiators which Are Maximally Linear at the Frequency \(\pi / p, \quad p \in \{ \text{Positive Integers} \} \)

Balbir Kumar, S. C. Dutta Roy, and Hitendra Shah

Abstract—In a number of signal processing applications, a digital differentiator (DD) performing over a narrow band of frequencies is required. The minimax relative error DD's are especially suitable for broad-band frequencies and become inefficient when adapted for narrow-band signals. The maximally linear DD's are, therefore, preferred for the latter situations. This correspondence proposes digital differentiators which are maximally linear at the spot frequency; \(\omega = \pi / p, \quad p \in \{ \text{positive integers} \} \). The suggested DD's, besides giving zero phase error over the entire band of frequencies \((- \pi \leq \omega \leq \pi)\), can achieve very high accuracy in the magnitude response, over a given frequency band.

Manuscript received November 18, 1990; revised July 8, 1991. B. Kumar is with the Department of Electronics and Communication Engineering, Delhi Institute of Technology, Delhi-110 008, India. S. C. Dutta Roy and H. Shah are with the Department of Electrical Engineering, Indian Institute of Technology, Delhi, New Delhi-100 016, India.

IEEE Log Number 9201601.
I. INTRODUCTION

The digital differentiator (DD) constitutes an important unit in many information processing systems. The frequency response of an ideal DD is

\[H(\omega) = j\omega \hat{\omega} H(\omega), \quad -\pi \leq \omega \leq \pi \]

where \(\hat{H}(\omega) = \omega \) and is purely real. Various FIR approximations of \(\hat{H}(\omega) \) have been reported in the literature based on the maximin relative error (MRE) criterion [1] as well as the maximally linear (ML) criterion [2]-[4]. The MRE designs are highly suitable for wide-band DD’s while the ML designs are particularly adaptable for narrow-band operations centered around \(\omega = 0 \) [2], \(\pi/2 \) [3], or \(\pi \) [4]. Applications of MRE designs to narrow-band situations would be computationally inefficient and uneconomical as compared to ML designs.

In this correspondence, we extend the ML designs for narrow-band operation around \(\omega = \pi/p \), where \(p \) is a positive integer. These designs would be useful in a number of applications. For radar systems using Doppler tracking [5], [6], for example, we use “speed gates” (also called “Doppler tracking filters”) which perform differentiation over a narrow band of frequencies centered at different positions of the frequency spectrum. Also, in airborne Doppler navigation systems [5], [6], it is necessary to perform differentiation over the frequency range \(\pi/12 \) to \(\pi/6 \), typically, with extremely high accuracy (relative error \(\leq -14 \) dB, typically). Similar requirements are also encountered in underwater navigation [7], beam-forming [8], and a host of communication problems [9], [10].

II. THE DESIGN

Consider the following maximally linear, FIR approximations of \(\hat{H}(\omega) \), of order \(N \), suggested by us earlier:

A) Digital differentiators, maximally linear at \(\omega = \pi \), are approximated by [4]

\[H_i(\omega) = \pi \sum_{k=1}^{n} \sin (i - 1/2) \omega + \sum_{k=1}^{n} b_k \sin \omega, \]

where \(n \) gives the total number of weights \(a_k \)’s and \(b_k \)’s. The weighting coefficients are given by the recursive relations:

\[\begin{align*}
 a_k &= \left[\frac{(2k - 3)}{k(k - 1)} \right] \frac{1}{2^{k-1}} \\
 b_k &= \left[\frac{(2k - 1)}{k(k - 1)} \right] + \sum_{k=1}^{n} (-1)^{k+1} \left(\frac{q + k - 1}{q - k + 1} \right) a_k
\end{align*} \]

(3a)

and

\[\begin{align*}
 a_k &= \left[\frac{(2k - 1)}{k(k - 1)} \right] \\
 b_k &= \left[\frac{(2k - 1)}{k(k - 1)} \right] + \sum_{k=1}^{n} (-1)^{k+1} \left(\frac{2k + r - 1}{2k - 1} \right) B_k
\end{align*} \]

(3b)

Relative error (RE) is defined by [1]

\[\text{RE} = \frac{\left| H_i(\omega) - \hat{H}(\omega) \right|}{\omega}, \quad -\pi \leq \omega \leq \pi. \]

Here, we have designated the weights \(a_k \) and \(b_k \) instead of \(c \) and \(d \) used in [4] to avoid confusion with "d," also used in [3].

By simple algebraic manipulation, we can write (2) as

\[H_i(\omega) = \pi \sum_{k=1}^{n} \sin \omega \left(\sum_{k=1}^{n} a_k \sin \omega \right) \]

(4)

B) Digital differentiators, maximally linear at \(\omega = \pi/2 \), are approximated by [3]

\[H_i(\omega) = \frac{\pi}{2} \sum_{k=1}^{n} d_k \sin \omega - \frac{1}{\pi} \sum_{k=1}^{n} d_k \sin \omega, \quad n \text{ even} \]

(5)

where \(n = (N - 1)/2 \) is the total number of weights and \(N \) is the order of the approximation. The weights \(d_k \)’s are given by [3]

\[\begin{align*}
 d_k &= \left[\frac{(2k + n - 1)}{2k - 1} \right] + \sum_{k=1}^{n} (-1)^{k+1} \left(\frac{(2k - 1)}{2k - 1} \right) \\
 i &= n, n - 2, \ldots, 6, 4, 2
\end{align*} \]

(6a)

and

\[\begin{align*}
 d_k &= \left[\frac{(2k + n - 1)}{2k - 1} \right] + \sum_{k=1}^{n} (-1)^{k+1} \left(\frac{(2k - 1)}{2k - 1} \right) \\
 i &= n, n - 2, n - 4, \ldots, 6, 4, 2
\end{align*} \]

(6b)

If we let \(k = (i + 1)/2 \) and \(m = n/2 \) in (3a); \(k = i/2 \) and \(m = n/2 \) in (3b), then after considerable algebraic manipulations and by using some combinatorial identities, it can be shown that

\[a_{i+1}/2 = d_i, \quad \text{i odd} \]

(7a)

\[b_{i+1} = -d_i, \quad \text{i even} \quad (i \neq 0). \]

(7b)

Using the results of (7) in (4), we obtain

\[H_i(\omega) = \pi \sum_{k=1}^{n} \sin \omega \left(\sum_{k=1}^{n} a_k \sin \omega \right) \]

(8)

It is readily seen that (5) and (8) can be combined into the following composite equation:

\[H(\omega) = \frac{1}{p} \left[\pi \sum_{k=1}^{n} \sin \omega \right] \]

(9)

where \(p = 1, 2, \quad n \text{ even} \)

We now show that (9) also represents an approximation of \(\hat{H}(\omega) \) such that \(H(\omega) \) is maximally linear at the spot frequencies \(\omega \).
= \pi/p$, where p is any positive integer (and not necessarily 1 or 2 only). For $H_p(\omega)$ to be maximally linear at $\omega = \pi/p$, we must have

$$H_p(\omega)\mid_{\omega = \pi/p} = \frac{\pi}{p}$$

(10a)

$$\left. \frac{d}{d\omega} H_p(\omega) \right|_{\omega = \pi/p} = 1$$

(10b)

Forcing conditions (10) on (9) and simplifying, we obtain the following two sets of linear equations:

$$d_1 - d_2 + d_4 - d_5 + \cdots + d_{n-1} = 1$$
$$d_1 - 3d_2 + 3d_4 - d_5 + \cdots + (n-1)d_{n-1} = 0$$
$$d_1 - 3^2d_2 + 3^2d_4 - d_5 + \cdots + (n-1)^2d_{n-1} = 0$$
$$\vdots$$
$$d_1 - 3^{n-2}d_2 + 3^{n-2}d_4 - d_5 + \cdots + (n-1)^{n-2}d_{n-1} = 0$$

(11)

and

$$d_1 - 2^3d_2 + 2^3d_4 - d_5 + \cdots + (n/2)^3d_{(n/2)-1} = 1$$
$$d_1 - 2^4d_2 + 2^4d_4 - d_5 + \cdots + (n/2)^4d_{(n/2)-1} = 0$$
$$d_1 - 2^5d_2 + 2^5d_4 - d_5 + \cdots + (n/2)^5d_{(n/2)-1} = 0$$
$$\vdots$$
$$d_1 - 2^{n-1}d_2 + 2^{n-1}d_4 - d_5 + \cdots + (n/2)^{n-1}d_{(n/2)-1} = 0$$

(12)

Note that the first line of (12) has +1 on the right-hand side instead of −1 appearing in [4, eq. (7b)]. This is due to our substitution: $b_i/2 = d_i$, i even, according to (7b) of this correspondence.

TABLE I

<table>
<thead>
<tr>
<th>n</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
<th>d_7</th>
<th>d_8</th>
<th>d_9</th>
<th>d_{10}</th>
<th>d_{11}</th>
<th>d_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>150</td>
<td>25</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2450</td>
<td>490</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>39600</td>
<td>8820</td>
<td>2268</td>
<td>405</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>640332</td>
<td>152460</td>
<td>45738</td>
<td>10890</td>
<td>1694</td>
<td>126</td>
<td>462</td>
<td>1584/2</td>
<td>990/4</td>
<td>440/6</td>
<td>132/8</td>
</tr>
</tbody>
</table>

Note 1: NF1 is normalizing factor for d_i, i odd.

Note 2: NF2 is normalizing factor for d_i, i even.

III. PERFORMANCE

The values of the weights d_i, used in (9), are given in [3] and reproduced here, in Table I, for completeness. The transfer function $H_2(\omega)$ gives zero phase error over the entire frequency range of operation on the unit circle ($\omega = e^{j\omega}$).

Figs. 2 and 3 show the frequency response, $H_p(\omega)$, for $p = 3$ and 4, respectively, for selected orders $N (= 2n + 1)$ of the structure $H_2(\omega)$. The frequency response is periodic in ω with period $4\pi/p$ rad. Since we are interested in its passband performance around $\omega = \pi/p$, the unwanted portion of the response is, of course, to be blanked by appropriate filters following the differentiators. As expected, extremely low relative errors are indeed available in the narrow bands of frequencies centered around $\omega = \pi/p$. This may be clearly seen from the "zoomed" part of frequency response curves, shown in insets in Figs. 2 and 3.
Fig. 2. The frequency response, \(H_n(\omega) \), of the proposed digital differentiators, maximally linear at \(\omega = \pi / 4 \) for \(n = 2, 6, 10, \) and 32. The inset shows the "zoomed" view of the frequency response around \(\omega = \pi / 4 \).

Fig. 3. The frequency response, \(H_n(\omega) \), of the proposed digital differentiators, maximally linear at \(\omega = \pi / 5 \), for \(n = 2, 6, 10, \) and 32. The inset shows the "zoomed" view of the frequency response around \(\omega = \pi / 5 \).

gives a comparison of the number of multiplications, \(n_1 \), of the proposed design (ML-DD) with the number of multipliers, \(n_2 \), required in a minimax relative error broad-band design (MRE-DD) [1], for RE's less than or equal to \(-100 \) dB and \(-160 \) dB and selected bandwidths of operation. As an example, for \(p = 4 \), an ML-DD (i.e., \(H_4(\omega) \)) meant to be maximally linear at \(\omega = \pi / 4 \), for performing over the frequency range \((0.25 \pm 0.1) \pi \) and \(\text{RE} \leq -160 \) dB, requires 30 multiplications as compared to 34 required in the case of MRE-DD, per input sample of the signal.

The realization of the TF \(H_p(z) \), with \(p = 2, 4, 6, \ldots \), requires integral delays. The structure, shown in Fig. 1, has an interesting feature that the TF \(H_p(z) \), for all even values of \(p (p \neq 0) \), can be easily achieved from the same structure without changing any of the coefficients, \(d_i \)'s, by simply choosing the delay blocks \((z^{-p/2}) \) and \((z^{-p/2}) \) commensurate with the value of the \(p \) chosen. In a digital processor, it is rather easy to obtain integral delays (by step down counters, for example) at no extra cost of the softwares. The multiplier \(1/(2p) \), shown just before the OUTPUT node, is only a "scaling factor."

The realization of the TF \(H_p(z) \), \(p = 1, 3, 5, \ldots \), requires a half delay \((z^{-1/2}) \). The proposed design would, therefore, be particularly suitable in a multirate system where, at times, the intermediate data values may be available without extra cost, for example, in decimation of sampling rate by a factor of two [4].

To allow compensation for clutter-Doppler shift and also for avoiding blind speeds (i.e., target speeds which preclude detection), in the moving target indication (MTI) radars, various systems, including two-frequency MTI, are in practical use [5]. The two-frequency MTI uses two carriers, \(f_{d1} \) and \(f_{d2} \) to obtain, respectively, the Doppler shifts, say, \(f_{d1} \) and \(f_{d2} \) from a moving target. As

\[
\frac{f_{d1}}{f_{d2}} \propto \frac{f_{d1}}{f_{d2}} = \frac{l}{m} \quad \text{(say)} \quad (13)
\]

where \(l \) and \(m \) are integers, the detection of \(f_{d1} \) and \(f_{d2} \) necessitates equal sensitivities of the two-frequency MTI for reception in uncorrelated clutter-Doppler frequency spread conditions [5]. It can be shown that the use of the proposed differentiators, maximally linear at \(\omega = \pi / 4 \) and \(\omega = \pi / m \), for detection of \(f_{d1} \) and \(f_{d2} \) respectively, would make the MTI receiver sensitivities exactly equal.

Besides the aforementioned possible applications of the suggested design, the mathematical formulas, given by (6a) and (6b), for computation of the exact values of the weights \(d_i \)'s, required in the design, is an attractive feature as compared to the optimization algorithms required in the minimax design [1].
TABLE II
The ratio n_1/n_2, showing comparison of the multiplications required per input sample of the signal for the digital differentiators performing around the frequencies: $\omega = \pi / p$ for $p = 3, 4, 5, \text{ and } 6$ and relative errors [RE] $5 \text{ less than or equal to } -100 \text{ dB and } -160 \text{ dB, where } n_1 = \text{ multiplications for the ML Design (proposed)}, n_2 = \text{ multiplications for the MRE Design (Broad-Band Design)}$ [1]

<table>
<thead>
<tr>
<th>p</th>
<th>$p = 3$</th>
<th>$p = 4$</th>
<th>$p = 5$</th>
<th>$p = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\text{RE} \leq -100 \text{ dB}}{\text{Range}}$</td>
<td>$\frac{\text{RE} \leq -160 \text{ dB}}{\text{Range}}$</td>
<td>$\frac{\text{RE} \leq -100 \text{ dB}}{\text{Range}}$</td>
<td>$\frac{\text{RE} \leq -160 \text{ dB}}{\text{Range}}$</td>
<td>$\frac{\text{RE} \leq -100 \text{ dB}}{\text{Range}}$</td>
</tr>
<tr>
<td>$\frac{\pi}{p}$</td>
<td>$\frac{\pi}{p}$</td>
<td>$\frac{\pi}{p}$</td>
<td>$\frac{\pi}{p}$</td>
<td>$\frac{\pi}{p}$</td>
</tr>
<tr>
<td>$\frac{\pi}{p}$</td>
<td>$\frac{\pi}{p}$</td>
<td>$\frac{\pi}{p}$</td>
<td>$\frac{\pi}{p}$</td>
<td>$\frac{\pi}{p}$</td>
</tr>
<tr>
<td>n_1</td>
<td>n_2</td>
<td>n_1</td>
<td>n_2</td>
<td>n_1</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>$\frac{1}{p}$</td>
<td>0.025</td>
<td>$4/7$</td>
<td>$8/12$</td>
<td>$6/8$</td>
</tr>
<tr>
<td>$\frac{1}{p}$</td>
<td>0.050</td>
<td>$8/9$</td>
<td>$12/15$</td>
<td>$8/12$</td>
</tr>
<tr>
<td>$\frac{1}{p}$</td>
<td>0.075</td>
<td>$10/14$</td>
<td>$16/19$</td>
<td>$14/17$</td>
</tr>
<tr>
<td>$\frac{1}{p}$</td>
<td>0.100</td>
<td>$14/28$</td>
<td>$20/24$</td>
<td>$26/30$</td>
</tr>
</tbody>
</table>

*Data not available.

IV. CONCLUSIONS
Efficient FIR digital differentiators, suitable for minimally linear operation around spot frequencies, have been proposed. Mathematical formulas for calculation of the exact values of the weighting coefficients needed for the design have been derived. Possible applications of the suggested structures have also been given.

ACKNOWLEDGMENT
The authors are thankful to the reviewers for their constructive criticisms of the work and useful suggestions for improving the manuscript.

REFERENCES

On the Cascade Realization of 2-D FIR Filters Designed by McClellan Transformation

Brian K. Lien

Abstract—The multidimensional finite impulse response (FIR) filters designed by McClellan transform can be implemented efficiently by the direct transformed structure, transpose direct transformed structure, cascade structure, Chebyshev structure, and reversed Chebyshev structure. In this correspondence, peak scaling and section reconfiguration are provided to modify the cascade structure realization. The modifications result in a reduction in the output roundoff noise power and the number of operations required.

I. INTRODUCTION
The McClellan transform is by far the most popular and successful method to design multidimensional FIR filters by transforming 1-D FIR filters [1]-[3]. The filters designed by McClellan transform can be implemented efficiently by the direct transformed structure, transpose direct transformed structure, cascade structure [4], Chebyshev [5], and reversed Chebyshev [6] structure with the number of operations required proportional to N. The direct transformed structure is not suitable for fixed-point implementation because of its very large output roundoff noise. The Chebyshev and reversed Chebyshev structure have the best roundoff noise performance but they have the drawback of more storage required and more complicated architecture [7]. Though the roundoff noise of cascade structure is larger than that of Chebyshev structure it has the advantage of inherent pipelinenability and low sensitivity.

The output roundoff noise of filters in cascade form depends mainly on scaling, ordering, and section configuration [8], [9]. The peak scaling was applied to the cascade structure in [5], but it was not applied to the internal node of each section. So by driving the

Manuscript received May 16, 1990; revised July 15, 1991.

The author is with the Department of Computer Science and Information Engineering, College of Science and Engineering, Fu Jen University, Taipei, Taiwan, Republic of China.

IEEE Log Number 9201604.