Abstract—In this paper, with a modest amount of modeling effort, a feedback–feedforward control structure is proposed for precision motion control of a permanent magnet linear motor (PMLM) for applications which are inherently repetitive in terms of the motion trajectories. First, a proportional integral derivative (PID) feedback controller is designed using a relay automatic tuning method. An iterative learning controller (ILC) based on zero-phase filtering is applied as feedforward controller to the existing relay-tuned PID feedback controller to enhance the trajectory tracking performance by utilizing the experience gained from the repeated execution of the same operations. Experimental results are presented to demonstrate the practical appeal and effectiveness of the proposed scheme.

Index Terms—Convergence analysis, iterative learning control (ILC), linear motor, practical motion control, proportional integral derivative (PID) control, relay tuning, zero-phase filter.

I. INTRODUCTION

PERMANENT magnet linear motors (PMLMs) are beginning to find widespread industrial applications, particularly in those requiring a high precision in positioning resolution, such as stages for various key semiconductor fabrication and inspection processes as in step and repeat micro-lithography, wafer dicing, probing and scanning probe microscopy (SPM).

The more predominant nonlinear effects underlying a linear motor system are the various friction components (Coulomb, viscous, and stiction) and force ripples (detent and reluctance forces) arising from imperfections in the underlying components [1]. Due to the typical precision positioning requirements and low offset tolerance of their applications, the control of these systems is particularly challenging since conventional proportional integral derivative (PID) control usually may not suffice in these application domains. Some efforts have been made toward more advanced control of PMLM motion systems. In [1], a neural-network (NN)-based feedforward assisted PID controller was proposed. A hybrid control strategy using a variable structure control (VSC) is suggested for submicron positioning control [2]. In these cases and more, the control framework can be described under a feedback–feedforward configuration.

In this paper, we are mainly concerned with the applications of the PMLM in operations involving repeated iterations of motion trajectories, such as pick and place assembly operations and many step and repeat process operations. In these typical tasks of PMLM, the time duration for the execution of an operational cycle is short. It is well known that finite-time tracking control is difficult with conventional controllers like the PID controllers which are arguably more suitable for set-point regulation. To achieve a better tracking performance, a feedforward controller is usually applied. In this paper, a new feedforward controller using an ILC algorithm is proposed and developed as a learning enhancement to the PID feedback controller.

Under this proposed control structure, two sets of control gains (feedback and feedforward) are to be tuned before the control system may be commissioned. Many PID controller autotuning techniques, based on relay feedback, have been proposed for process control applications [3]. Relay autotuning of PID controllers have also recently been developed for servo systems where an additional time delay has to be introduced into the relay so that a sustained oscillation can be excited [4]. As shown in the experimental studies of [4], an effective set of PID control parameters can be very efficiently and quickly extracted from such an experiment, leading to satisfactory control performance. As for ILC design, although many results on ILC convergence analysis are available, meager results are available on the practical design of an ILC with a modest amount of model knowledge. This paper presents a systematic way of ILC design method using simple zero-phase filtering.

In this paper, an $l_1$-norm on a vector space $\mathcal{V}$ is defined as follows: for every $\mathbf{v} \in \mathcal{V}$, $\mathbf{v} = \{v_{j,k}\} j = 1, \ldots, N; k = 0, 1, \ldots, N_p$,

$$||\mathbf{v}||_1 \doteq \sum_{k=0}^{N_p} ||v_k||,$$

where $||\cdot||$ is a usual vector norm, e.g.,

$$||v_k|| \doteq \left( \sum_{j=1}^{N} (v_{j,k})^2 \right)^{1/2}.$$

We assume $\mathcal{V}$ contains sampled time function vectors. These functions in continuous time domain are supposed to be $C^2$, i.e.,
twice continuous and differentiable for all \( t \) with some exceptions in a finite set \( \mathcal{D} \). In actual computer controlled systems, most signals belong to \( \mathcal{V} \) where \( N_P \) is the number of samples and \( N \) the dimension of the signal vector.

II. PERMANENT MAGNET LINEAR MOTOR (PMLM)

A. Overall System Description

The linear motor considered in the paper is a brushed DC PMLM produced by Anorad Corporation [8]. The only measurement available is the translator’s position obtained from an incremental linear optical encoder. Fig. 1 depicts a block diagram model of the motor, showing explicitly the various exogenous disturbance signals presented. \( u(t) \) and \( i(t) \) are the time-varying motor terminal voltage and the armature current, respectively; \( x(t) \) is the motor position; \( f(t) \) and \( f_{\text{load}}(t) \) are the developed force and the applied load force, respectively. \( f_{\text{fric}} \) and \( f_{\text{ripple}} \) denote the frictional and ripple force, respectively. \( f_n(t) \) includes any uncertainty and disturbance in the system. \( K_f, K_e, R_a, L_a, \) and \( m \) are force constant, back EMF constant, armature resistance, armature inductance and the load of the motor, respectively.

B. Friction and Ripple Forces

The frictional force affecting the movement of the translator may be modeled as a combination of Coulomb friction, viscous friction, and the component due to Stribeck effect, which can be interpreted as stiction.

Apart from friction, one of the known disturbance forces generated in the PMLM is the force ripple due to cogging and reluctance forces presented in the PMLM structure [1]. The force ripple can be described by a sinusoidal function of the load position with a period of pitch distance. In reality, the ripple force is more complex in shape, e.g., due to variations in the magnet dimension.

C. Challenges to Controller Design

For high precision PMLM motion control, \( f_{\text{fric}}, f_{\text{ripple}} \) and \( f_n(t) \) are major challenges to the controller design. Especially, \( f_{\text{ripple}} \) and \( f_{\text{fric}} \) have nonlinear time varying impact on the system dynamics. The accurate modeling of the whole system is extremely time consuming and cost-inefficient, if not impossible.

Therefore, the practical problem is to efficiently control the PMLM with a modest amount of modeling work when only the position measurement is available. This paper contributes to the solution of this practical problem by using a relay autotuned PID controller and an iterative learning controller designed based on simple zero-phase filtering.

III. PID FEEDBACK CONTROLLER DESIGN USING ARTIFICIAL RELAY TUNING

A. Relay Tuning

Clearly, manual tuning of the PID controller’s parameters is tedious and time consuming, and yet unfortunately, the results are often less than satisfactory. An extension of the renowned relay autotuning method to the tuning of our proposed control scheme can be found in [4] as shown in Fig. 2 where \( L \) is an artificial delay.

The modified system transfer function of the position-loop can be approximated by

\[
\begin{align*}
G(s) &= \frac{K_p \omega_0^2}{s(s^2 + 2\zeta \omega_0 s + \omega_0^2)} e^{-sL} \\
&= \frac{K_p \omega_0^2}{s^2 + 2\zeta \omega_0 s + \omega_0^2} e^{-sL} \tag{1}
\end{align*}
\]

where \( K_p, \zeta, \) and \( \omega_0 \) are the static gain, damping factor, and natural frequency, respectively. The static gain \( K_p \) may be obtained from a separate velocity step response which will simultaneously yield a good estimate of the time constant, useful for the choice of \( L \).

It is well known that information on the system frequency response between \( \omega = 0 \) and \( \omega = \omega_u \) (the ultimate frequency) is most useful for control system synthesis. Since \( L \) is an additional delay cascaded so that identification at phase lag of less than \( -180^\circ \) can occur, \( L \) may be selected according to the empirical guideline of

\[
\frac{2\pi}{\tau_r} = \beta \quad 0 < \beta \leq \frac{\pi}{2} \tag{2}
\]

where \( \tau_r \) is a gross estimate of the time constant obtained from the same velocity step response.

B. Setting the PID Parameters

The remaining parameters in (1) can be obtained by equating the PMLM system and its model at the oscillation frequency \( \omega_u \), i.e.,

\[
|G(j\omega_u)| = \frac{1}{K_u}, \quad \arg G(j\omega_u) = -\pi. \tag{3}
\]

From (3), the model parameters can be estimated from the following equations:

\[
\begin{align*}
\omega_u &= \frac{\omega_u}{\sqrt{1 \pm \frac{K_p \omega_u}{\omega_u} \left| \sin (\omega_u L) \right|}} \\
\zeta &= \frac{\left( \frac{\omega_u^2 - \omega_0^2}{\omega_u^2} \right) \cos (\omega_u L)}{2\omega_u \omega_0} \tag{4}
\end{align*}
\]
A PID controller of the form, \( G_c(s) = K_c(1 + (1/sT_i) + sT_d) \) is used as the position loop controller. The design objective is such that the closed-loop transfer function is

\[
\frac{G_c(s)G(s)}{1 + G_c(s)G(s)} = \frac{1}{1 + sT_{\alpha 1}}
\]

where \( T_{\alpha 1} \) is the desired time-constant of the closed-loop response of the system which is to be specified by the designer. A simple solution for the choice of the parameters of the PID controller is then

\[
T_i = \frac{2\zeta}{\omega_0}, \quad T_d = \frac{1}{\omega_0^2 T_i}, \quad K_c = \frac{1}{K_p T_i T_{\alpha 1} \omega_0^2}.
\]

IV. FEEDFORWARD CONTROLLER USING ZERO-PHASE–BASED ITERATIVE LEARNING

Up to now, a PID feedback controller has been designed with only a relay experiment and a (velocity) step response experiment. Clearly, this feedback controller may not be optimal due to the linear time invariance assumption. However, within a limited frequency range of interest, it is still a reasonable design as shown in the experimental results presented in Section V. The main problem to be addressed is how to improve the control performance using a learning feedforward controller (LFFC). This section presents a solution—iterative learning control, with a detailed design procedure together with a learning convergence analysis.

A. Iterative Learning Control

The term iterative learning control (ILC) was coined by Arimoto et al. [5] for a better control of repetitive systems. For more information, readers can refer to [7], [6]. It is interesting to note that the noncausal filtering [10], [9], especially zero-phase filtering [11] technique may provide a way for PID-autotuning type design task of ILC. This paper contributes a practical ILC design procedure which has been experimentally verified.

B. Zero-Phase FIR Filter and Its Properties

In this paper, a class of simple zero-phase filters is considered. Given the causal finite impulse response (FIR) filter \( H(z) \), for any input signal \( x(k) \), the filtered output \( y(k) \) can be expressed by

\[
y(k) = \sum_{s=0}^{M} h(s)x(k-s) \triangleq h_M \ast x(k)
\]

where \( M \) is the length of the FIR filter and \( \ast \) denotes the discrete convolution. Therefore, \( h_M \ast x \) is a mapping operator between input and output signals. Using the notation of \( Z \)-transform, (7) can be written as

\[
Y(z) = H(z) \cdot X(z)
\]

where \( Y(z) \triangleq Z(y(k)) ; X(z) \triangleq Z(x(k)) ; H(z) \triangleq Z(h(k)) \) and \( H(z) \equiv \sum_{s=0}^{M} h(s)z^{-s} \) denoting the \( Z \)-transfer function of the FIR filter. Then, the zero-phase (noncausal) filter can be simply constructed as \( H'(z) = H(z) \cdot H(z^{-1}) \), and can be written as

\[
\sum_{k=-M}^{M} h'(k)z^{-k}\triangleq h_M \ast \ast
\]

Clearly, the above zero-phase FIR filter operator \( h_M \ast \ast \) is actually a symmetric moving averager. Usually, the coefficients are normalized to one, i.e.,

\[
2 \sum_{k=-M}^{M} h'(k) + h'(0) = 1.
\]

Lemma IV.1: Given the zero-phase filter \( h_M \ast \ast \) of length \( 2M + 1 \) with its coefficients normalized as in (9). For any integer \( k \), we have

\[
\sum_{j=k-M}^{k+M} h'(j-k) \cdot (j-k) = 0.
\]

Proof: The proof is straightforward using (9) and the symmetry of coefficients \( h'(k) \).

Consider a continuous-time signal \( g(t) \), \( t \in [0, T] \). When sampled at the sampling period of \( T_s \), it is assumed that \( g(kT_s) \in \mathcal{V}, N_p T_s = T \). When applying the above zero-phase filter \( h_M \ast \ast \) on \( g(kT_s) \), a contraction mapping can be constructed as shown in the following lemma.

Lemma IV.2: Given the zero-phase filter \( h_M \ast \ast \) of length \( 2M + 1 \) with its coefficients normalized as in (9). For any \( g(kT_s) \in \mathcal{V}, N_p T_s = T \), there exists a positive real number \( \gamma \), which is a function of \( M \), such that operator \( (1 - \gamma h_M \ast \ast) \) is a contraction mapping on \( g(\cdot) \), i.e.,

\[
\left\| (1 - \gamma h_M \ast \ast) g(\cdot) \right\|_1 \leq \rho \left\| g(\cdot) \right\|_1 \rightarrow 0 \text{ as } i \rightarrow \infty
\]

where \( \rho < 1 \).

For a proof of Lemma IV.2, see [12].

C. Iterative Learning Controller Via zero-phase Filtering

A block-diagram is shown in Fig. 4 where FBC stands for “feedback controller” and \( y_d \) is the given desired output trajectory to be tracked. After the \( i \)th iteration (repetitive operation), the feedforward control signal \( u_{ff}^i \) and the feedback control
signal $u_{fb}^i$ are to be stored in the memory bank for constructing the feedforward control signal at the next iteration, i.e., $u_{fb}^{i+1}$. The stored feedback control signal $u_{fb}^i$ are to be filtered by a zero-phase filter $H_{M}^*$ multiplied by a learning gain $\gamma$.

The learning updating law is hence given by

$$u_{ff}^{i+1}(k) = u_{ff}^i(k) + \gamma H_{M}^* u_{fb}^i(k) \quad (12)$$

while the overall control is simply that

$$u_{i+1}(k) = u_{ff}^{i+1}(k) + u_{fb}^{i+1}(k) \quad (13)$$
as shown in Fig. 3 where two parameters—$\gamma$, the learning gain and $M$, the length index of the zero-phase filter (8), are to be designed and specified.

The simplest form of (12) [11] is

$$u_{ff}^{i+1}(k) = u_{ff}^i(k) + \frac{\gamma}{2M+1} \sum_{j=-M}^{M} u_{fb}^i(k+j) \quad (14)$$

where $H_{M}^*$ is simply an algebraic averager.

In this paper, the detailed form of dynamic system shown as “plant” in Fig. 3 will not be specified. This is not necessary as argued in [14] from the advocated principle of self support (PSS) because the stored control signals are in essence the plant itself. Therefore, instead of making some assumptions on the system class to be controlled, we can equivalently preassume some properties on the control signals which may be more direct and practical. For practical systems, it is reasonable to assume the following.

(A1) The plant to be controlled is stabilizable and further, internally stable.

(A2) The number of inputs is equal to the number of outputs (measurement variable).

(A3) The desired control input $u_d(t)$ exists uniquely for a given desired output trajectory $y_d(t)$.

(A4) The system dynamics $u_d(t)$ can be decomposed into a repeatable part $u_d^R(t)$ and a nonrepeatable part $u_d^{NR}(t)$, i.e.,

$$u_d(t) \approx u_d^R(t) + u_d^{NR}(t) \quad (15)$$

where $u_d^{NR}(t)$ is bounded by

$$H_{M}^* u_d^{NR} \leq \varepsilon^*, \quad \forall i. \quad (16)$$

Remark IV.1: It is a common assumption that $u_d^{NR}(t)$ is a random variable with zero mean. When $H_{M}^*$ takes the special form of (14), in this case, (16) becomes

$$H_{M}^* u_d^{NR} \approx \varepsilon^* = H_{M}^* \varepsilon^*, \quad \forall i. \quad (17)$$

where $\varepsilon^* \approx 0$. Therefore, in actual applications, $\varepsilon^*$ is normally very small.

The convergence of the proposed learning controller is in the sense that $u_{ff}^{i+1}$ approaches $u_d^R$ as $i$ increases. This is summarized in the following theorem.

Theorem IV.1: A system satisfying assumptions (A1)–(A4) is controlled by a suitable feedback controller as shown in Fig. 3 which performs a given task repeatedly. When applying the zero-phase filtering based ILC scheme (12), there exists a $\gamma(M) \in (0, 2)$ such that the learning process is convergent, i.e.,

$$\lim_{i \to \infty} \frac{\|u_{ff}^i\|_1}{\|u_d^R\|_1 + \varepsilon_0}$$

where $\varepsilon_0$ is proportional to $\varepsilon^*$ and $\varepsilon_0 \to 0$ as $\varepsilon^* \to 0$.

A proof of Theorem IV.1 is given in the Appendix.

D. Design Procedures

One frequently used zero-phase filter, an algebraic averager, is considered as an example for illustrating the design consideration. Its frequency response can be computed as

$$H_{M}(\omega) = \frac{\sin(\omega MT_s)}{\omega MT_s}. \quad (18)$$

1) Design of $M$: A suitably chosen $M$ is very important.

Small $M$ will bring in more high-frequency signal components stored in the memory bank. This is the key reason of the divergence for some ILC schemes which may be convergent at the initial iterations but as ILC runs, divergence can be observed in practical applications [9]. Meanwhile, an unnecessarily large $M$ deteriorates the signal’s low-frequency components while smoothing out the high-frequency components.

A practical design procedure is proposed as follows. At the first iteration only the feedback controller is commissioned. At the end of the first iteration, performing a discrete Fourier transform (DFT) of the feedback signal $u_{fb}^i(t)$ gives the spectrum of the feedback signal. Therefore, the cutoff frequency $\omega_c$ of the filter can be obtained. $\omega_c$ should be chosen a little bit higher than the frequency corresponding to the magnitude peak in the amplitude-frequency plot of $u_{fb}^i(t)$. Using $\omega_c$ and setting

$$H'(\omega_c) = \frac{\sqrt{2}}{2} \quad (19)$$

will give an estimate of $M$ for a given $T_s$. For example, for

$$H_{M'(\omega_c)} = \frac{\sin(\omega_c MT_s)}{\omega_c MT_s} = \frac{\sqrt{2}}{2}$$

will give an estimate of $M$ for a given $T_s$. For example, for

$$H_{M'(\omega_c)} = \frac{\sin(\omega_c MT_s)}{\omega_c MT_s} = \frac{\sqrt{2}}{2}$$
and one gets
\[ \omega_c MT_s \approx 1.392 \] (20)
using `solve('sin(x)/x = sqrt(2)/2')` of MATLAB Symbolic Math Toolbox. Therefore
\[ M \approx \frac{1.392}{\omega_c T_s}. \] (21)

**Remark IV.2:** According to Shannon’s sampling theorem, approximately, \((2\pi/\omega_c T_s)\) should be larger than two. Therefore, in any case, it can be concluded that \(M\) should not be less than two. This implies that when \(M = 0\) and \(\omega_c\) is finite, the ILC scheme
\[ u_{j+1}^{ff}(k) = u_{j}^{ff}(k) + \gamma u_{j}^{fe}(k) \] (22)
which was analyzed in [13], may not actually work well in practice.

2) **Design of \(\gamma\):** A suitably designed \(\gamma\) depends on what kind of knowledge is assumed about the plant to be controlled. In practice, one can always start with a smaller, conservative \(\gamma\) via which the learning process converges. Then fine tuning of \(\gamma\) is still possible depending on what plant knowledge is available. In most engineering practice, it is quite common that the frequency response of the system is partially available. Since the system considered is controlled by a feedback controller, the closed-loop transfer function \(G_c(j\omega)\) is assumed to be available. In this section, a linear system model is used because at certain range of frequencies concerned, from the Bode plot, it is always possible to approximate the practical system by a linear system.

Full knowledge of \(G_c(j\omega), \omega \leq \omega_c\) may be sometimes impractical. Therefore, it is assumed that at least the value of \(G_c(j\omega)\) is available. In what follows, it will be shown that \(G_c(j\omega)\) can be used to design a reasonable \(\gamma\).

Denote \(G_o(j\omega)\) and \(\hat{G}_o(j\omega)\) as the transfer functions of the feed back controller and the open-loop plant, respectively. Then
\[ G_o(j\omega) = \frac{G_o(j\omega)G_c(j\omega)}{1 + G_o(j\omega)G_c(j\omega)}. \] (23)
Writing the ILC updating law (12) in the frequency domain gives
\[ U_{j+1}^{ff}(j\omega) = U_{j}^{ff}(j\omega) + \gamma H'(\omega)U_{j}^{fe}(j\omega) \] (24)
where \(U_s\) denotes the frequency domain counterpart of \(u_s\). In the following, \((j\omega)\) is omitted for brevity. Since \(U^{fe}(j\omega)\) can be written by
\[ U^{fe} = \frac{G_o(j\omega)}{1 + G_o(j\omega)G_c(j\omega)} Y_d - \frac{G_c G_o}{1 + G_o(j\omega)G_c(j\omega)} U^{ff} \] (25)
where \(Y_d\) is the frequency domain transformation of \(y_d(t)\), (24) becomes
\[ U_{j+1}^{ff} = (1 - \gamma H'(G_c) U^{ff} + \gamma H' \frac{G_o}{G_c} Y_d. \] (26)

Iterating (26)
\[ U_{j+1}^{ff} = (1 - \gamma H' G_c)^{j+1} U^{0}_{j+1} + \left[ 1 - (1 - \gamma H' G_c)^{j+1} \right] \frac{1}{G_o} Y_d. \] (27)
Clearly, the convergence condition is that
\[ |1 - \gamma H'(\omega) G_c(j\omega)| < 1, \quad \forall \omega. \] (28)
The converged value is given by
\[ U_{j+1}^{ff} = \frac{1}{G_o} Y_d \] (29)
which requires an inverse of \(G_o\).

Condition (28) may not be applicable for all \(\omega\). Therefore, only \(\omega\) less than a frequency of interest, say, \(\omega_c\), is considered. Designing \(\gamma\) is then to solve
\[ |1 - \gamma H'(\omega) G_c(j\omega)| < 1, \quad \forall \omega \leq \omega_c. \] (30)
Since \(H'(\omega)\) is known as shown, for example, in (18), \(\gamma\) can be obtained from the knowledge of \(G_c(j\omega)\). A plot of \(\gamma(\omega)\) is available from (30). This plot is useful in selecting a suitable \(\gamma\) when different frequencies of interest are to be considered. Usually, with the only information of \(G_c(\omega_c)\), one can still determine a suitable \(\gamma\).

V. EXPERIMENTAL STUDIES

A. Testbed System

In the experimental studies, an Anorad laboratory testbed system is used. The control algorithms are implemented on an MX-31 DSP development system from Integrated Motions, Inc. (IMI), which utilizes a Texas Instruments TMS320c31 32-bit floating point processor with 60 ns single-cycle instruction execution time. Control programs are written in C, compiled on an IBM personal computer (PC) which can be downloaded into the MX-31 through a serial communication link. The position encoder is the only transducer available and the measurements can be transmitted to the PC through the same serial communication link. In our experiments, the encoder resolution is 1 \(\mu\)m. All data stored in MX-31 can be uploaded to the PC for post-analysis in a Matlab environment.

B. Control Task

The particular PMLM considered in this work is a brushed DC PMLM LS-B series LS1-24 manufactured by Anorad Corporation [8]. The maximum effective travel length is 609.6 mm and the maximum velocity is 0.5 m/s. A typical point-point desired tracking trajectory is specified as
\[ x_d(\tau) = x_b + (x_b - x_f) \left( 15\tau^4 - 6\tau^5 - 10\tau^3 \right) \] (31)
\[ v_d(\tau) = v_b + (v_b - v_f) \left( 60\tau^3 - 30\tau^4 - 30\tau^2 \right) \] (32)
where \(\tau = t/(t_f - t_0) = t/T \in [0, 1]\). Note that the velocity profile is in a bell form and \(x_b\) is normally set to zero.

The control task is to track the given desired trajectories (31) and (32) as close as possible in a finite fixed time duration as the operation repeats from cycle to cycle.
C. Design of PID Feedback Controller

PID controller can be easily designed via two experiments: 1) velocity step response and 2) a relay autotuning under the guidelines given in Section III. Two experiments have been carried out for comparing the PID control performance with PMLM running at the minimum and maximum velocities. As shown in Fig. 4, the feedback PID control thus tuned exhibit satisfactory tracking performance as well as robustness.

D. Iterative Learning Feedforward Controller Design

We will now apply the systematic method developed in Section IV-D to the design of the ILC. For illustration purposes, we shall present some experimental results for several different combinations of $\gamma$ and $M$.

To obtain a guideline for the ILC parameter design, we follow the considerations in Section V-C where the closed-loop system bandwidth is 20 Hz when setting $T_{\alpha1}$ to 0.008 s. Applying (21), one obtains

$$ M \geq \frac{1.392}{2\pi \times 20 \times 0.001} \approx 11 $$

while using

$$ 1 - \frac{1}{j2\pi \times 20 \times 0.008 + 1} = \left| 1 - \gamma \times (0.4974 - 0.5000j) \right| < 1 $$

gives

$$ 0 < \gamma < 2. $$

When $M$ increases, the upper bound for $\gamma$ will also increase. For example, when $M = 11$, the upper bound for $\gamma$ becomes 2.8289 instead of two.

For an effective implementation of the ILC, the following additional issues should be considered.

- **Initialization.** As one of the postulates [5] in ILC formulation, the system is required to be reset at the identical initial state after each repetition of the motion trajectory, since the error in initialization will affect the final tracking performance directly and adversely. This is especially so for the PMLM system, where the ripple force varies with the position of the translator. The proposed control scheme is able to achieve an accurate initialization automatically. This is possible because the set-point tracking accuracy can be achieved within 0.02% by the relay-tuned PID controller alone and the same PID controller may be used for the set-point regulation after completion of each repetition to reset the initial conditions to the same state. It is critical to correct the value of set-point during the initialization via PID control. The terminal tracking error of the last repetition can be used for this correction.

- **Signal Filtering.** The position measurement used is an averaged value of three consecutive A/D samples. An averaging finite difference formula is also used for velocity estimation, i.e.,

$$ \dot{x}(t) = (x(t) - x(t - N))/ (N \Delta t) $$

(33)

where a practical choice of $N$ is three. It has been validated in many robotic applications that the simple scheme (33) is equivalent to many advanced and complex schemes.
E. Experimental Results on PID Plus ILC Control Scheme

When the relay tuned PID controller is applied alone, the results were presented in Section V-C. It can be shown that a fixed PID controller tuned by artificial relay feedback experiment performs well for minimal velocity and maximal velocity situations. In what follows, it will be illustrated that, using a simple ILC scheme (14), the tracking performance can be improved significantly. The feedback PID controller is the same as the one used in Section V-C.

1) Fixed $\gamma$ with Different $M$: A cautious $\gamma$ is chosen to be 0.1. Different filter lengths were used to test the ILC convergence. As shown in Fig. 5, when $M = 0$, it is not convergent for the reasons in Remark IV.2. However, the ILC convergence
Fig. 7: Feedforward control signals during iterative learning process, fixed $M = 10, \gamma = 0.1$.

Fig. 8: Feedback control signals during iterative learning process, fixed $M = 10, \gamma = 0.1$.

at several initial iterations can be observed. The similar situation happened when $M = 1, 2, 3$. When $M > 4$, the ILC exhibits good convergence property. When $M$ increases to 20, no further significant improvement can be obtained. This verifies the ILC design formula (21).

2) Fixed $M$ with Different $\gamma$: As verified in Fig. 5, a suitable $M (M = 10)$ is chosen and fixed. Contrary to Section V-E-1, different learning gains were used here to test the ILC convergence. As shown in Fig. 6, when $\gamma$ increases, ILC converges faster. However, sustainable ILC convergence (or long-term stability of ILC [9]) will not be guaranteed as $\gamma$ increases from 0.3 and beyond.

To have a clear understanding about the proposed ILC scheme, a series of plots for feedforward and feedback control signals at several ILC iterations are shown in Figs. 7 and 8. We can see that the feedforward control signal converges from zero to the repeat-
able part of the feedback control signal (see Fig. 7). On the other hand, the feedback control signal, as shown in Fig. 8, reduces as ILC converges. It is true that the feedback control signal at the 50th iteration is almost a zero mean random signal. This verifies the assumption (A4) in Section IV-C. Collectively from Figs. 7 and 8, it can be observed that through iterative learning $u_{jj}^i$ tends to relieve the burden of feedback controller. This implies, critical or optimal design of a feedback controller may not be necessary.

VI. CONCLUSION

It has been successfully shown in this paper that, with a modest amount of modeling, it is possible to achieve precision motion control of a PMLM. A feedback–feedforward control structure is proposed for applications which are inherently repetitive in terms of the motion trajectories. A relay-tuned PID feedback controller is used together with an iterative learning feedforward controller. An additional delay is introduced to achieve self-induced controlled oscillations from which the PID controller can be automatically tuned. By using a simple zero-phase filtering technique, the design task of ILC is reduced to tuning two parameters: length of the filter and the learning gain. Convergence analysis and detailed design procedures are presented. Some practical considerations in the parameter tuning are outlined. Experimental results are presented to demonstrate the practical appeal and effectiveness of the proposed scheme. The clearly illustrated controller design procedures are also appealing for other applications.

APPENDIX

PROOF OF THEOREM IV.1

Proof: From (13), the feedback signal at the $i$th iteration can be written as

$$ u_{j}^{i} = u_{j} - u_{jj}^{i} = u_{R}^{i} + u_{d}^{i} - u_{jj}^{i}. \quad (34) $$

Applying the filtering operator $h_{M}^{i} \ast$ on both sides of (34) gives

$$ h_{M}^{i} \ast u_{j}^{i} \leq h_{M}^{i} \ast u_{R}^{i} - h_{M}^{i} \ast u_{jj}^{i} + \varepsilon^{i}. \quad (35) $$

Substituting (35) into the learning updating law (12), one obtains

$$ u_{j}^{i+1} \leq (1 - \gamma h_{M}^{i} \ast) u_{jj}^{i+1} + \gamma (h_{M}^{i} \ast u_{jj}^{i} + \varepsilon^{i}). \quad (36) $$

Iterating $i$ in (36)

$$ u_{jj}^{i} \leq (1 - \gamma h_{M}^{i} \ast)^{i+1} u_{jj}^{0} + \left[1 - (1 - \gamma h_{M}^{i} \ast)^{i+1}\right] u_{R}^{i} + \left[1 - (1 - \gamma h_{M}^{i} \ast)^{i+1}\right] \varepsilon^{i}. \quad (37) $$

It is shown in Lemma IV.2 that the operator $(1 - \gamma h_{M}^{i} \ast)$ is a contraction mapping, i.e.,

$$ \lim_{i \to \infty} \|(1 - \gamma h_{M}^{i} \ast)^{i+1}\|_{1} = 0. \quad (38) $$

While

$$ \lim_{i \to \infty} \|(1 - \gamma h_{M}^{i} \ast)^{i+1}\|_{1} \leq 1 + \lim_{i \to \infty} \|(1 - \gamma h_{M}^{i} \ast)^{i+1}\|_{1} \quad (39) $$

and

$$ \left\| (1 - \gamma h_{M}^{i} \ast)^{i+1} u_{jj}^{i} \right\|_{1} \to 0 \text{ when } i \to \infty. \quad (40) $$

therefore, (37) becomes

$$ \lim_{i \to \infty} \|u_{jj}^{i}\|_{1} \leq \|u_{R}^{i}\|_{1} + \|\varepsilon^{i}\|_{1}. \quad (41) $$

When $\varepsilon^{i}$ tends to zero

$$ \lim_{i \to \infty} u_{jj}^{i} = u_{R}^{i}. \quad (42) $$

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers and in particular, Associate Editor, Prof. K. Kozlowski, for their helpful comments.

REFERENCES


Kok Kiong Tan (S’94–M’99) received the B.Eng. degree in electrical engineering with honors and the Ph.D. degree from the National University of Singapore (NUS) in 1992 and 1995, respectively.

He was a Research Fellow of Gintic, a national R&D institute spearheading the promotion of R&D in local manufacturing industries, from 1995 to 1996. During his stay there, he was involved in several industrial projects with various companies, including MC Packaging Pte Ltd., Panalpina World Transport, and SATS cargo. He then joined NUS as a Lecturer. His current research interests are in the applications of advanced control techniques to industrial control systems and mechatronic systems.
Huifang Dou received the B.Eng. degree in industrial automation from Wuhan University of Technology, Wuhan, China, and the M.Eng. degree in automatic control from Beijing Institute of Technology, Beijing, China, in 1985 and 1988, respectively. She received the Ph.D. degree from the Department of Precision Instrument and Mechanology, Tsinghua University, Beijing, China, in April 1997. She served as a Lecturer with the Department of Precision Mechanical Engineering, Xi’an Institute of Technology, Xi’an. She has been working as a Research Fellow with the Department of Electrical Engineering, National University of Singapore. Her current research interests include servomechanism, precision motion control, embedded systems, and real-time computing.

Yangquan Chen (S’95–S’98) received the B.Eng. degree in industrial automation from University of Science and Technology of Beijing, Beijing, China, and the M.Eng. degree in automatic control from Beijing Institute of Technology (BIT) in 1985 and 1989, respectively. He received the Ph.D. degree from the School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, in July 1998. He visited the Space Research Corporation (SRC, Belgium) and was invited to BIT, as a Guest Researcher for flying vehicle projects. From 1987 to 1995, he had been with the Department of Electrical Engineering of Xi’an Institute of Technology (XIT). He had served as a Department Head since 1992 and an Associate Professor since 1994. He received a number of ministerial level awards for his excellence in teaching and academic research in China. Since January 1996, he joined the Department of Electrical Engineering, National University of Singapore (NUS) as a Research Engineer and then a Professional Officer. Since March 1999, he has been working with Seagate Technology International, Singapore Science Park as a Senior R&D Engineer for hard disk drive servo control where his work has led to a number of pending U.S. patents. He has authored more than 80 technical papers. His current research interests include servomechanism, iterative/repetitive/adaptive learning control, curve identification, robot control, batch process control, static/dynamic optimization, and optimal control problem solver.

Tong Heng Lee (M’88) received the B.A. degree with First Class Honors in the engineering tripos from Cambridge University, Cambridge, U.K., and the Ph.D. degree from Yale University, New Haven, CT, in 1980 and 1987, respectively. He is a Professor in the Department of Electrical Engineering at the National University of Singapore. He is also currently Head of the Control Engineering Division in this Department, and the Vice-Dean (Research) in the Faculty of Engineering. His research interests include adaptive systems, knowledge-based control, and intelligent mechatronics. He has published extensively in these areas, and currently holds Associate Editor appointments in Automatica, Control Engineering Practice, the International Journal of Systems Science, and Mechatronics.

Dr. Lee was a recipient of the Cambridge University Charles Baker Prize in Engineering. He is an Associate Editor of the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS.